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Absrracl-The maintenance of large information systems involves 
continuous modifications in response to evolving husiness conditions or 
changing user requirements. Based on evidence from a case study, we 
show that the systems maintenance activity would benefit greatly if the 
process knowledge reflecting the teleology of a design could be captured 
and used in order to reason about the consequences of changing con- 
ditions or requirements. We describe a formalism called REMAP 
(REpresentation and MAintenance of Process knowledge) that accu- 
mulates design process knowledge to manage systems evolution. To ac- 
complish this, REMAP acquires and maintains dependencies among 
the design decisions made during a prototyping process, and is able to 
learn general domain-specific design rules on which such dependencies 
are based. This knowledge cannot only be applied to prototype refine- 
ment and systems maintenance, but can also support the reuse of ex- 
isting design or software fragments to construct similar ones using an- 
alogical reasoning techniques. 

Index Terms-REMAP, systems maintenance support. 

I. INTRODUCTION 

M ETHODS for the analysis and design of information 
systems are often effective in developing initial de- 

signs but rarely support the correction of design errors or 
changes in. previous design choices due to changing re- 
quirements. As a result, changes in system design tend to 
be unprincipled, ad hoc, and error prone, failing to take 
cognizance of the justijications for previous design deci- 
sions. In this paper, we examine some of these shortcom- 
ings and present a knowledge based system architecture 
called REMAP that strives to alleviate these problems. 
REMAP supports an iterative design and maintenance 
process by preserving the knowledge involved in the ini- 
tial and evolving design, and making use of this knowl- 
edge in analogous design situations. 

The research that led to the REMAP architecture was 
stimulated by our study of a complex system development 
effort (several related systems with hundred-thousands of 
l ines-of-code each). This study revealed several types of 
process knowledge that are instrumental in developing and 
maintaining such systems. First, the design process con- 
sists of a sequence of interdependent design decisions. 
The dependencies among decisions are typically based on 
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application-specific justifications. In the case study, such 
justifications were frequently laid down on paper in de- 
sign documents. While general domain-dependent rules 
typically underlie these justifications, these rules are sel- 
dom articulated explicitly by users or analysts. Second, 
when systems are developed in a piecemeal fashion fol- 
lowing the prototyping idea, analysts apply analogies to 
transfer experience gained from one subsystem to “sim- 
ilar components” of another. 

It is the purpose of this paper to demonstrate-by ana- 
lyzing the evidence from our case study, by developing 
the REMAP architecture and by presenting the most cru- 
cial parts of its implementation-that the development and 
maintenance process would benefit if this knowledge 
about dependencies and the general bases for them could 
be accumulated in an appropriate form, and used to reason 
about subsequent design changes. Specifically, this paper 
argues that a knowledge based support tool for this must 
have the following architectural components: 

1) a classification of application specific “concepts” 
into a taxonomy of design objects, and mechanisms for 
elaborating this structure as more knowledge is acquired 
by the system. 

2) a representation for design dependencies and mech- 
anisms for tracing repercussions of changes in design. 

3) a learning mechanism for extracting general rules 
from dependencies, associated with a mechanism to check 
new design objects or dependencies for consistency with 
the rules. 

4) an analogy based mechanism for detecting similar- 
ities among parts of similar subsystems. This mechansim 
should make use of the classification in the generalization 
hierarchy to draw analogies between systems parts. 

We describe each of these components in terms of the 
specific feature of process knowledge that they deal with 
and how this knowledge is represented. In order to estab- 
lish a sufficiently rich context for discussion, the exam- 
ples are parts of the design that were actually developed 
in an oil company. For readability, these examples are 
only represented graphically as data flow diagrams at a 
high level of abstraction. However,  as described in Sec- 
tion III of the paper, the internal knowledge representa- 
tion of REMAP is object-oriented and can accommodate 
a wide range of practically useful languages for require- 
ments analysis, system design, and programming. 

The remainder of this paper is organized as follows. 
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Section II begins with detailed real-world examples that 
are used to show the need to maintain process knowledge 
and to identify different kinds of such knowledge. The 
REMAP architecture is presented in Section III. Section 
IV describes in detail the learning component as a central 
part of the architecture. Section V provides a discussion 
relating the model to previous work in systems analysis 
and artificial intelligence. We conclude with a summary 
of possible applications which may benefit from the RE- 
MAP approach. 

II. CLASSIFICATION OF DESIGN PROCESS KNOWLEDGE 

In this section, examples from a case study in the oil 
industry are used to illustrate different forms of process 
knowledge. Four classes are identified: specific knowl- 
edge about design dependencies (at the level of in- 
stances), general knowledge about design rules, knowl- 
edge about the essentiality of conditions for certain design 
decisions, and knowledge about analogical properties be- 
tween design situations. 

A. The Case Study 
The problem studied in the oil company involves the 

desin and subsequent maintenance of a series of sales ac- 
counting systems for different products of the company, 
here referred to as OC. OC  sells oil and natural gas-based 
products with different characteristics to its subsidiaries 
and to outside customers in different parts of the world. 
Sales Accounting at OC’s Corporate Headquarters re- 
quires generating various integrated reports for purposes 
of audit and control. Input to Sales Accounting is based 
on invoices generated from transactions in a number of 
offices in the U.S. and abroad. 

For the sake of readability, we describe systems using 
the structured analysis representation [9], [ 141. However,  
the problems described in this section and our approach 
toward solving them are not confined to this representa- 
tion. 

In structured analysis, systems designs are described in 
terms of data flow diagrams at various levels of abstrac- 
tion. A data flow diagram is a network where the nodes 
represent processes, external entities, or data stores (files), 
and directed arcs represent the data flows from one node 
to another. Process nodes are frequently called “bub- 
bles”; each bubble can be decomposed into a lower-level 
data flow diagram. Rubbles at the bottom level have as- 
sociated minispecs on which the program designs are 
based. Data flow and data store information is managed 
in data dictionaries. Fig. 1 shows the notational conven- 
tions used in this paper. 

Part of the structured top-down design of OC’s Sales 
subsystem is illustrated in Figs. 2-5. Fig. 2 shows a con- 
text diagram which depicts the relationship of the system 
to external entities. Figs. 3, 4, and 5 are data flow dia- 
grams for levels 1 and 2 of the sales system. Further de- 
composition and implementation, possibly using different 
languages, would finally lead to a working system; how- 
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Fig. 1. Data flow diagram conventions. 

Fig. 2. Sales accounting systems context diagram 

ever, the level of detail given in Figs. 2-5 is sufficient to 
describe the problems of systems maintenance and our so- 
lution to them. 

We now illustrate the problem of design adaptation 
using three scenarios. Each requires a different extent of 
modification to the original design, and illustrates the need 
for a different aspect of process knowledge. All of the 
examples involve external requirements changes but sim- 
ilar problems also occur during the refinement cycle. 

B. The Role of General and Specijc Knowledge 
London Sends Formatted Invoices: In the original de- 

sign, the difference between the New York and London 
invoices was that the former were accessable formatted 
whereas the latter were received unformatted, on mag- 
netic tape. Hence, a minor “convert” operation was re- 
quired to bring the inputs into a format required by the 
“verify and correct on line” operation (bubble 1.1) 

As a simple change, suppose that the. London office be- 
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I 1 
Fig. 3. Fuel sales (initial). 

+ 
Fig. 4. Auto-load-and-edit. 

gins to send correctly formatted invoices on magnetic tape 
to central headquarters. What kinds of design modifica- 
tions are required? 

It is clear that the change is not at a high enough level 
to affect the more abstract part of the design in Fig. 3. 
However,  at the next lower level (Fig. 4), the “convert” 
bubble is not required anymore since the London invoices 
should now proceed directly for verification. 

In order to be able to assimilate this minor change, a 
designer must know that in the existing design, the con- 
vert bubble is dependent on the nature (i.e., unformatted) 
of the dataflows representing London invoices. On  recog- 

Fig. 5. Manual-add-and-edit. 

nizing that London invoices are no longer unformatted, it 
should be able to detect the fact that conversion is unnec- 
essary. Further, he should also know that in general, for- 
matted invoices proceed directly for on-line verification. 
Based on this, he should direct London invoices to the 
“verify and correct on line” operation. 

In summary, we have used two types of knowledge in 
understanding the existing design and the effects of 
changes to it: general knowledge about domain-specific 
constraints (i.e., unformated invoices require conver- 
sion), and specijic knowledge about the purpose of exist- 
ing design objects in the form of justifications for existing 
design choices (i.e., the existence of the convert bubble 
in Fig. 4 depends on the existence of unformatted in- 
voices). 
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C. The Role of Essentiality 
London and Tokyo Will Not Sell Fuels Anymore: This 

represents a more radical type of change than the first. 
Intuitively, it seems clear that major design modifications 
are needed at several levels of analysis, design, and im- 
plementation. For example, lack of invoices from Tokyo 
obviates the need for a manual add and edit operation at 
level 1 (a manual input operation was required because 
these were paper invoices). However,  the auto load and 
edit is still required because New York invoices must still 
be processed. 

This example illustrates the idea of essentiality in de- 
sign; the Tokyo invoices dataflow was an essential input 
for manual add and edit. In a more general sense, the pur- 
pose of a manual add and edit operation was to process 
paper invoices. The other inputs to it (the discount pay- 
able slips, codes and expenses) were auxiliary, and in fact 
dependent on Tokyo invoices.’ In effect, bubble 1 stays 
(although some of its lower level components correspond- 
ing to London operations are removed), while bubble 3 
must be deleted. The revised level 1 dataflow design is 
shown in Fig. 6. 

It should also be noted that although the manual add 
and edit operation is no longer necessary, some of the 
lower level operations associated with it are still required 
in order to process New York invoices. At the program- 
ming level, this means that the code corresponding to 
those operations is not deleted since it is shared with the 
auto load and edit process. 

D. The Role of Analogy 
The Venezuela Ofice Will Sell Fuels: This corresponds 

to a high level change this is likely to induce widespread 
changes into the existing design. First, some additions 
must be made at level 1. The types of changes, however, 
depend on the nature of the sales invoices from Vene- 
zuela. If the invoices are computerized, an input into bub- 
ble 1 is required whereas paper invoices would call for 
introducing a manual add and edit operation. Similarly, 
at the next lower level, the operations required would de- 
pend on other, more detailed features of the invoices (i.e., 
are they formatted, unformatted, etc.). 

This example illustrates the use of analogy in reasoning 
about a new situation. Design additions at the various lev- 
els depend on how “similar” the Venezuela invoices are 
to existing ones, and the design ramifications of these 
similarities and differences. This type of reasoning re- 
quires a system to carry out an elaborate match between 
design parts the system currently knows about, and a new 
design in order to draw out their analogous features. Spe- 
cifically, it requires some notion of what are the important 
dimensions in the analogy being sought. In this example, 
relevant attributes in drawing the analogy are the medium 
of the invoices, that is, whether they are computerized or 

‘This illustrates the “nonuniform” nature of dataflow diagram entities, 
that is, relationships among “unconnected” entities, and the design con- 
sequences that can emerge due to changes in them. 

Fig. 6. Fuels 
I I 

sales (modified). 

manual, and whether they are formatted. Once the impor- 
tant features are realized, the design ramifications become 
clear. 

E. Summary: The Need for Teleological Knowledge 

In walking through the examples, we have attached 
fairly rich interpretations to the various design compo- 
nents that are implicit in the design, i.e., not necessarily 
represented or even representable in structures such as data 
flow diagrams or any other purely outcome-oriented 
knowledge representations. These interpretations derive 
from the purpose of the application which cannot be de- 
termined from looking at the resulting design alone. That 
is, the design is an artifact [35] whose teleological struc- 
ture is imposed by the designer’s conception of the prob- 
lem. This conception may change repeatedly during the 
evolutionary design process. In other words, there is no 
a priori “theory” relating problems to designs; rather, 
the justification for a particular design follows from a sub- 
jective world-view of the designer. 

If a support system is to be able to reason about the 
types of changes illustrated in the examples, it must have 
the knowledge that reflects the teleology of the design. 
Because such highly contextual knowledge about a poten- 
tial application area is impossible to design into a system 
a priori, the knowledge must be acquired by the support- 
ing system during system design. To do this, the program 
must be equipped with mechanisms that enable it to learn 
about design decisions in an application area that it knows 
nothing about at the start of the design. It must then apply 
this growing body of acquired knowledge to reason about 
subsequent modifications to an existing design, or to con- 
struct new designs based on new but similar requirements. 
In the following section, we describe an architecture called 
REMAP that is geared toward the extraction and manage- 
ment of the process knowlege involved in systems devel- 
opment and maintenance. 
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III. THE REMAP ARCHITECTURE 

It is apparent from the examples that application-spe- 
cific knowledge and experience plays a key role in rea- 
soning about a design. This raises an important question, 
namely, how can a system acquire such knowledge? 

In most projects involving the construction of a knowl- 
edge based system, the system builder constructs the 
model of expertise by first specifying a representation, and 
then accreting the knowledge base in accordance with the 
precepts underlying the chosen representation. Unfortu- 
nately, large scale application developments take place in 
a wide variety of domains that may have little in common. 
This uniqueness of each application situation discourages 
construction of a knowledge base that might be valid for 
a reasonable range of applications. 

If a knowledge based system is to be able to support the 
process of systems analysis and design, it must have an 
initial representational framework, and mechanisms to 
augment this f ramework with domain specific knowledge 
that captures the purpose of design decisions and relation- 
ships among them. As more is learned, it should be pos- 
sible to use this process knowledge to reason about design 
changes, and draw analogies in extending a design to deal 
with new situations. 

In the following subsections, we develop a knowledge 
representation for this process knowledge, and present a 
model of how it is used by the REMAP system architec- 
ture. Each of the components of this architecture illus- 
trates the use of a certain type of process knowledge. We 
conclude the section by illustrating how these components 
interact through a global control structure. A detailed ex- 
ample of the most important subsystem within the archi- 
tecture-the learning component-is presented in Section 
IV. 

A. Representing Design Outcomes Using Structured 
Objects 

The REMAP model centers around design objects. The 
designer defines instances of such objects, and the RE- 
MAP system maintains a generalization hierarchy of ob- 
ject types. The structure of an object type definition in the 
hierarchy is as follows: 

OBJECT TYPE 
type-name : < string > 
child-of : < set of object types > 
parent-of : < set of object types > 
components: < set of slots > 
operators : < set of procedures/methods > 

The “child-of” and “parent-of” components position 
an object type in the generalization hierarchy. “Compo- 
nets” slots describe typical aspects of an object instance 
of the given type. As an example, consider the initial top- 
level definition of a generic object type. 

OBJECT TYPE 
type-name : generic-object 
child-of : ( ) 

parent-of : unknown 
components: (identifier : < string > 

type : <string> 
because-of : < set of objects >) 

operators : (define, remove) 
This means that any object will have an identifier, a 

type, and a “because-of” slot. The generic object type 
has no parent, and its children are yet to be specified. The 
“because-of” slot defines the r&son d’etre of an object 
instance and will be further discussed in the next subsec- 
tion. 

A “generic” object provides very little structural in- 
formation about its semantics. It is therefore useful to 
specify subtypes for which additional slots are defined in 
order to capture the meaning of object instances of such 
a subtype. This can be represented using a generalization 
hierarchy of object types as shown in Fig. 7. Some in- 
stances of dataflows and transforms used in the three 
scenarios of Section II are shown in Fig. 8. 

In principle, the system could begin with the generic 
object type and then learn all subtypes from scratch. Since 
such a procedure would be rather cumbersome for the de- 
signer, the system should be provided with an initial set 
of object types useful for a broad range of domains, for 
instance, those associated with the analysis, design, and 
implementation languages in use. For example, if the de- 
signer were to work with data flow diagrams, the initial 
knowledge base of object types might contain the follow- 
ing definitions (cf. Fig. 7): 

OBJECT TYPE 
type-name : dataflow 
child-of : generic-object 
parent-of : unknown 
components: (part-of : dataflow; 

medium : < string > ; 
from, to : process) 

operators : (redirect, nostart, noend) 
OBJECT TYPE 

type-name : transform 
child-of : generic object 
parent-of : (process, external, datastore) 
components: (inputs, outputs : < set of dataflows > ) 
operators : ( ) 

OBJECT TYPE 
type-name : process 
child of : transform 
parent_of : unknown 
components: (part-of : process) 
operators : (expand, noinput, nooutput) 

OBJECT TYPE 
type-name : datastore 
child-of : transform 
parent-of : unknown 
components: (data-structure : 

< set of data elements >) 
operators : (define-structure, noinput, nooutput) 
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Fig. 7. Initial object type hierarchies. 

Fig. 8. Initial generalization hierarchy. 

OBJECT TYPE 
type-name : external-entity 
child-of : transform 
parent-of : unknown 
components: ( ) 
operators : ( ) 

External entities could be further refined to data source, 
data sink, and interactor. The slot value “unknown” re- 
fers to the fact that the slot values should be, but have not 
yet been, defined. 

As an example of instance dejnitions, consider the fol- 
lowing description of the “London” external entity and 
one of the sales invoice dataflows generated by it (cf. Fig. 
8). 

(identifier : London 
type : external-entity 
because-of : ( ) 
inputs : ( ) 
outputs : (London-direct-sales-invoices, 

London-assigned-sales-invoices, 
London-statistical-sales-invoices) 

{identifier : London-direct-sales-invoices 
type : dataflow 
because-of : (London) 
part-of : ( ) 
medium : magnetic tape 
from : London 
to : auto-load-and-edit} 

Similarly, instances corresponding to other object types 
can be defined. Note, that the instance definitions have all 
the slots defined in their immediate type, as well as in- 
heriting those of their supertypes. 

Besides the definition of design objects, it is also pos- 
sible to perform “syntactic” consistency checks using in- 
formation in the hierarchy. As a simple example, if a bub- 
ble has no inputs, it must be removed or new inputs must 
be defined. However,  certain types of application-specific 
information are not maintained in this representation. For 
instance, if London invoices become “formatted, ” ram- 
ifications of this change cannot be assessed using the 
knowledge in the hierarchy alone. To reason about such 
situations, additional data structures are required, which 
we describe in the following subsections. 

B. Representing Design Processing Using Dependencies 

REMAP views a design process as a set of interrelated 
design decisions. Design decisions are represented in 
terms of justified actions. An action consists of adding, 
deleting or changing a design object; its justification con- 
sists of previous actions. A design decision is represented 
in REMAP as a two-part data structure called depen- 
dency: 

( < justification > = = > < action > ) 

where <justification > and C action > are references to 
object instances. 

To illustrate, consider Fig. 9 which shows a network of 
dependencies among a few of the dataflows and bubbles 
considered so far. Specifically, the auto-load-and-edit ob- 
ject is justified by the existence of New York and London 
invoices (both objects), which form its “set of support” 
WI. 

In order to demonstrate the usefulness of this depen- 
dency network, reconsider the first scenario where the 
London invoices become formatted. In this case, the con- 
vert operation is no longer required since its essential sup- 
port elements have been eliminated. Similarly, in the sec- 
ond scenario where the London office does not sell fuels 
anymore, no more invoices are generated from London. 
Again, no conversion operation is required. However,  the 
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Fig. 9. A dependency network. 

auto load and edit operation is still required because New 
York invoices are still to be processed. 

In general, a dependency network can be used to assess 
certain ramifications of a deletion or change in previous 
design decisions. Such processes are commonly referred 
to as belief maintenance [ 121. In the above example, con- 
version is not required for London invoices. However,  the 
dependency network does not indicate how these invoices 
should be treated because this knowledge is not expressed 
in the network. In order to assess the complete repercus- 
sions of the change, more general (object type level) 
knowledge is required. For example, to realize that for- 
matted London invoices should be treated like New York 
invoices (and should proceed directly for verification), it 
is necessary to know that in general formatted invoices 
are verified directly. This knowledge can then be used to 
reason about all object instances corresponding to for- 
matted invoices. 

C. Learning as Rule Formation 

Dependency information as indicated in Fig. 9 is rep- 
resented in terms of object instances. For example, the 
auto-load-and-edit object (bubble 1) is justified by the two 
kinds of dataflow objects originating from London. An 
object type corresponding to this invoice dataflow might 
have slots such as data, amount, frequency, and source. 
However,  not all slots are relevant to the justification. For 
example, the auto-load-and-edit is performed because the 
invoices are computerized, regardless of their other fea- 
tures. A general rule that subsumes this dependency would 
therefore state that computerized invoices require auto- 
load-and-edit. It is the purpose of REMAP’s learning 
component to acquire such rules. 

In forming a rule, however, the system must first learn 
the relevant category of object types (i.e., computerized 
invoices) that will constitute the left-hand side of the rule. 
If we consider “dataflow” as being a generic object with 
the structure described earlier, what the system must do 
is to form a specialization of it, where the specialization 
involves restricting the value of one or more slots of the 
generic object. For example, a computerized invoice can 
be considered a specialization of the dataflow object with 
the medium slot being restricted to values that belong to 
the set “computerized entities” like disk or magnetic 
tape. 

Basically, the learning procedure views each depen- 
dency (stated in terms of object instances) as a training 
instance consisting of a situation object and an action ob- 
ject. Each training instance has an associated hypothesis 
space which consists of possible generalizations of the sit- 
uation object. A training instance is termed positive with 
respect to its action object, and negative with respect to 
all others. As more and more examples (i.e., dependen- 
cies) are provided in the course of a systems development 
process, irrelevant elements of the various hypothesis 
spaces are eliminated and the system converges on gen- 
eralizations (i.e., type definitions and rules) that are con- 
sistent with the examples. If a hypothesis space shrinks 
to the point where no generalizations can be found, this 
indicates inconsistencies in the design or in the design rule 
base and must be corrected by the user. In order to accel- 
erate convergence of the hypothesis space, REMAP can 
provide system-generated examples for categorization as 
positive or negative training instances by the user. The 
learning procedure is described in detail in Section IV. 

To summarize, the learning objective is twofold: to 
form appropriate specializations of the predefined object 
types relevant to the application domain, and to establish 
relationships in the form of rules between these special- 
ized object types. This results in a growing generalization 
hierarchy such as that of Fig. 10, and in rules that are 
applicable at various levels of abstraction. 

D. Analogical Reasoning Using Object ClassiJication 
and Rules 

The effort of learning a flexible object type hierarchy 
and general design rules associated with it pays off in two 
ways. First, types and rules can be used to check the cor- 
rectness of new design object instances added to a design. 
The second advantage is less obvious but potentially more 
important. When requirements changes demand the con- 
struction of new design objects in addition to the removal 
of existing ones, analogical reasoning methods can be 
employed to explore the possibility of reusing fragments 
of existing designs, based on the general knowledge ac- 
quired by REMAP’s learning component. 

For example, Section II-D introduced a scenario where 
a new operation was added, namely, sales of fuels from 
Venezuela. In order to assimilate such a change into an 
existing design, a system must be able to utilize its knowl- 
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Fig. 10. Reconfigured generalization hierarchy. 

edge concerning the purpose of “similar” design frag- 
ments. Specifically, it must determine what attributes of 
the new situation are the same as objects it already knows 
about, and then treat the new object accordingly. 

In order to categorize a new object, it is necessary to 
first determine, if possible, the most specific level of ab- 
straction in the generalization hierarchy that is applicable 
to it. For example, if REMAP’s current knowledge about 
dataflows is that shown in Fig. 10, and computerized but 
unformated invoices come in on magnetic tape from Ven- 
ezuela, they are classified as an instance of the magnetic- 
tape-invoices type. Rules referencing this type can be ap- 
plied to it in order to create new object instances auto- 
matically . 

If no rules are applicable to the newly defined object as 
the most specific level, more general rules might be ap- 
plicable. This involves moving up the generalization hi- 
erarchy as long as applicable rules are found. In the ex- 
ample, this involves gathering rules applicable to 
magnetic-tape invoices, then computerized invoices, and 
finally dataflows in general. For Venezuela invoices, we 
can see that one of the rules mentioned in the previous 
section will apply at the level of computerized invoices, 
suggesting that the existing auto-load-and-edit operation 
(or a new instance of it) be performed on them. 

It should be noted that even though there may not be an 
object in the current design that is similar to the new one, 
existing rules learned during previous design processes 
might still apply. For example, London invoices had been 
originally unformatted; this had required a convert oper- 
ation which was subsequently eliminated when the form 
of these invoices was changed. However,  since a rule on 
formatted versus unformatted invoices was retained which 
now becomes applicable to Venezuela invoices, the old 
convert operation could be reinstalled, or a similar one 
implemented if the formatting differs at a lower level of 
abstraction than shown in our examples. 

E. REMAP Control Structure 
In order to incorporate new knowledge and to reason 

about user critiques, REMAP requires an overall control 
structure that enables it to switch among design support 
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Fig. 11. Summary of REMAP architecture. 

and knowledge acquisition modes. Fig. 11 provides an 
architectural summary of the system. The architecture 
consists of five modes of operation and two knowledge 
bases. One knowledge base describes the design objects 
and dependencies at the instance level, whereas the other 
one is a meta-knowledge base which contains the object 
type hierarchy and the general design rules. We shall first 
describe the functionality of the architecture for two typ- 
ical scenarios and then present a semiformal summary of 
the interaction of the modes in a structured-English no- 
tation. 

Consider first a scenario where the user wants to add a 
new design object. The add mode accepts a design object 
and its associated justification (i.e., a dependency plus 
possibly a detailed description of the design object). The 
analogical reasoning mode assists first in identifying the 
type of objects. It then tries to apply design rules to gen- 
erate additional objects dependent on the one entered by 
the user. If the system has accumulated knowledge about 
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the application domain, rule application might continue 
down to the implementation level. For each action, the 
belief maintenance mode is responsible for entering ob- 
jects and dependencies to the instance-level knowledge 
base. If existing rules are not applicable to the new ob- 
jects, the learning mode assumes control and attempts to 
form a generalization (rule) from the dependency (this is 
described in detail in Section IV). The learning model also 
comes into play if a contradiction is encountered, in which 
case it initiates interaction with the user in order to correct 
the object instances, or to establish new rules and, if nec- 
essary, specify new object types. The system then returns 
to the belief maintenance mode in order to do the required 
changes at the instance level and to trace the conse- 
quences of the newly acquired knowledge, returning con- 
trol to the analogical-construction-mode. 

If parts of an existing design are to be removed, the 
system will start in the critique mode. In this case, the 
belief maintenance mode is responsible for tracing which 
dependent objects can also be removed from the design, 
by following the chains of dependencies in the instance- 
level knowledge base. Updates to a given design object 
can be considered as deletions followed by additions of 
the new version. 

We now give a high-level summary of the algorithms 
underlying each mode. We should point out, however, 
that the learning mode description will be more under- 
standable after reading Section IV, which is a walk- 
through of the algorithm using a detailed example. 

Add-mode: 
1. Accept object instance i and its justification object 

J 
2. Call Analogical-construction-mode (i, j). 

Analogical-construction-mode (inst, just): 
1. Position inst and just in type hierarchies, finding 

types ti and tj. 
2. Call Belief-maintenance-mode (‘ ‘add’ ‘, inst, just, 

ti, tj ). 
3. FOR each rule r of form “ti = > x” or “tp = > 

X 7, 

where ti is a subtype of tp DO 
IF an object instance corresponding to x  does not 
exist 

THEN create object X. 
Call Analogical-construction-mode (x, inst). 

Delete/critique-mode: 
1. Accept object o to be removed. 
2. Call Belief-maintenance-mode (“del”, o, nil, nil, 

nil). 

Belief-maintenance-mode (op, inst, just, ti, tj): 
1. IF op= “del” 

THEN IF just = { } 
THEN Remove inst from each set of sup- 
port. 

\* Note that the description of inst is not 
removed *\ 

FOR EACH object obj with empty set of 
support DO  
Call Belief-maintenance-mode (‘ ‘de1 ’ ‘, obj, 
nil, nil, nil). 

ELSE \*op = “add” *\ 
Add just = > ist to the dependency base. 
Add the description of inst to the design object 
base. 
Call Learn-mode (just, inst, ti, tj). 

Learn-mode (i, j, ti, tj): 
1. FOR EACH rule tj = > x where x incompatible with n 

: L 6, 
Request correction by user. 

2. IF there exists a dependency k = = > i \* positive 
training instance *\ 

THEN IF new slots 
THEN Establish new terminology with 
user. 

FOREACHx ==> y 
IF ti = type of x  \* negative training in- 
stance *\ 

and i incompatible with y  
THEN Reduce hypothesis spaces for i and 
Y. 

3. Provide system-generated examples for further type 
refinement. 

IV. SYNTHESIZING THE GENERALIZATION HIERARCHY 

Inferring plausible object types and rules from design 
decisions (dependencies) can be considered a learning 
task.3 It involves generalizing situations (the left-hand side 
of the instance level dependency) into subtypes on which 
design decisions (the right-hand side) might be based. For 
example, if sales invoices coming from London are com- 
puterized (a situation) and are processed directly by com- 
puter (a decision), a plausible generalization is that com- 
puterized invoices in general can be processed by 
computer. It therefore makes sense to create a category 
called “computerized invoices” and a general rule stating 
that computerized invoices are to be processed directly. 
These two types of knowledge can then be used to rec- 
ognize new instances of such invoices, and how they are 
to be processed. The problem of course, is to distinguish 
among the important and the incidental attributes of the 
situation. 

Our  approach to forming general descriptions is based 
on the construction of a structured hypothesis space (a 
lattice data structure) for each decision. This space con- 
tains possible generalizations of situations for each deci- 
sion. These generalizations are gradually eliminated or 
refined with successive examples. For a design expressing 

aA design object is called incompatible with another one if both consti- 
tute alternative actions for the same situation. Without loss of generality, 
actions that are not equal can always be considered incompatible if the right 
level of abstraction is chosen. 

‘We would like to acknowledge the significant input of Padmanbhan 
Ranganathan in developing the learning strategies presented in this section. 
These strategies are described in more detail in [I 11. 
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many situation-action pairs, the ultimate goal is to syn- 
thesize a taxonomy of appropriate situation descriptions, 
each corresponding to a decision expressed in the design. 
Specifically, the aim is to synthesize a generalization hi- 
erarchy of concepts relevant to the application domain that 
contains general situation descriptions on which the de- 
sign decisions are based. 

Formally, a situation is characterized in terms of an in- 
stance di of one of the object types in the existing hier- 
archy described as in Section III-A. This object type, 
hence called D, has slots sl, s2, s3, * * * , sP. An instance 
di consists of the set of pairs of properties { Sj : I/i,j > where 
V, is the value of the j th slot. An operator that is appli- 
cable to this situation is represented as tk. In the applica- 
tion domain, di = = > tk represents a design decision to 
perform tk in the situations described as di. If this first 
example is followed by the example ‘ ‘dj = = > tk”, this 
example represents a positive training instance for tk 
whereas the example dj = = > tl represents a negative 
training instance for tk. The learning goal is to converge 
on those properties of examples that are, by themselves 
or in combination, relevant to the design decisions, and 
to acquire the necessary terminology interactively. 

A. Designer Generated Examples 

To introduce the learning model, consider some design 
decisions made by a systems designer/analyst from the 
sales accounting system. To keep the example clear, we 
restrict the description of object type D (a special kind of 
data flow) to four of the slots, namely, “from,” “me- 
dium,” “priority,” and “frequency.” The first example, 
designated El, corresponding to a small design fragment 
from Fig. 3, is: 

E, = 
{d, 

from: London 
medium: magtape 
priority: high 
frequency : daily > 

= = > Auto-load-and-edit 

where Auto-load-and-edit is an action performed on a da- 
tatlow characterized by the left-hand side. The set 
{from: London, medium:magtape, priority:high, fre- 
quency:daily} represents the situation dl. The operator t, 
that is applicable to dl is Auto-load-and-edit. Based on 
this example alone, the following possibilities arise: 

1) All pairs of d, are relevant in deciding on tl. 
2) Only some combination of the pairs are relevant to 

tl. 
3) All pairs of d, are merely incidental, that is, t, is 

performed on al2 instances of D  regardless of their prop- 
erties .4 

A representation of the possibilities, the hypothesis 

‘In this section, we ignore the case that a new slot might be necessary 
to distinguish object subtypes. This case would simply be handled by user 
intervention. 

space of all possible rules based on the first example, is 
shown in Fig. 12. A question mark indicates that there is 
no restriction on the slot value. The figure represents a 
hypothesis space for t, , extending from the most specific 
hypothesis, at level 0, down to the most general one at 
level 4. 

It is worth contrasting such a hypothesis space with 
those that are constructed using an a priori taxonomy of 
object types such as is done in the learning system LEX 
[24] where nodes represent situations characterized in 
terms of the types in the existing taxonomy. We interpret 
our hypothesis space in the same way, as consisting of 
object types. The difference is that these types are imphcit 
in our hypothesis space and need to be characterized ex- 
plicitly . Specifically, the nodes contain specializations of 
D, that is, subtypes with restrictions on values of certain 
slots. In our example, nodes at level 1 are those where 
values of any three slots have restricted values and the 
fourth slot can take any value. Similarly, level 4 consists 
of the most general object type, where values of all 4 slots 
are unrestricted. In effect, each of the nodes in the hy- 
pothesis space is a specialization of D, corresponding to 
a particular object type. The generalization hierarchy cor- 
responding to this hypothesis space is shown in Fig. 13. 
In summary, an initial hypothesis space generates a crude 
object taxonomy. As the space is refined, so is the tax- 
onomy . 

Now another example, again representing a design de- 
cision, is presented. 

E2 = 
v2 

from: London 
medium: disk = = > Auto-load-and-edit 
priority: high freq:daily } 

Comparison to E, shows that only the value of the “me- 
dium” slot is different. The second example calls for the 
same right hand side and is therefore a positive training 
instance with respect to E,. The fact that both left-hand 
sides, which represent slightly different situations, have 
the same right-hand side leads to the following possibili- 
ties: 

1) The values of the “medium” slot are irrelevant in 
determining which operator is to be applied, since chang- 
ing them made no difference to the action to be per- 
formed. 

2) Alternatively, the values may in fact be essential, if 
they belong to some generic category which requires per- 
forming t,. For example, “magtape” and “disk” could 
both belong to a “superclass” called “computerized” 
which could be what requires cl. This situation requires 
creating a new term, in this case computerized, that will 
characterize the new superclass. However since the sys- 
tem has no domain knowledge for generating this type of 
vocabulary, the system must query the user. If the user 
responds with “computerized,” the system asks the user 
to enumerate or characterize other members belonging to 
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1*r*1 0 

1 rrt1 2 

Fig, 12. Hypothesis space for auto-load-and-edit (t, ) after E, 

from’ London iron: Lolldon 

i D  t from: London ‘1 

Fig. 13. Generalization hierarchy after E,. Nodes in the hierarchy are spe- 
cializations of D where slot and value pairs on the right of the vertical 
bar indicate restrictions on an object type. The lines joining the nodes 
are IS-A Links. 
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this class. This information can be used to recognize other 
instances of the new class. 

Both these possibilities are represented in the hypothe- 
sis space. In the second case, certain nodes in the hypoth- 
esis space are generated to accommodate the information 
in the positive training instance. This is the well known 
disjunctive problem which occurs in generalization from 
examples. 

The hypothesis space for t,, shown in Fig. 12, is now 
refined to reflect these modifications. We  have replaced 
“magtape” by “computerized” in the relevant slots. This 
change reflects a modification of the object types in the 
hypothesis space as shown in Fig. 14. The generalization 
hierarchy is reorganized accordingly to incorporate the 
modified object type. 

Now consider a third example: 
E3 

Id3 
from: Tokyo 
medium: paper = = > manual-add-and-edit 
priority: high 
freq: daily } 

This instance is a negative example with respect to the 
decision auto-load-and-edit. Comparison of this new 
training instance with E, and E2 reveals the following: 

1) The values of slots “priority”and “freq” are the 
same in all three instances. This implies that the “prior- 
ity” and ‘ ‘freq” pairs do not, by themselves or in com- 
bination, discriminate in deciding which operator should 
be applied. 

2) The values of the slots “from” and “freq” could, 
in conjunction with values of other slots, provide the jus- 
tification for Manual-add-and-edit ( t2 ). 

In the light of the evidence from the third example, it 
is apparent that object types corresponding to 

DI DI DI 
[priority: high lfreq : daily (priority: high 

1 freq: daily 
do not discriminate among the examples, and can there- 
fore be eliminated from the two hypothesis spaces so far. 
The nodes corresponding to these tyes are indicated in the 
dotted section of Fig. 14. In the refined hypothesis spaces 
of auto-load-and-edit and manual-add-and-edit (Fig. 15) 
these nodes are marked as eliminated. 

The generalization hierarchy, reflecting the refined hy- 
pothesis spaces is also modified to that shown in Fig. 16. 
It represents a union of the two hypothesis spaces. 

As a final example, consider the following: 
E4= 

id4 
from: Tokyo 
medium: paper = = > Manual-add-and-edit 
priority: high 
freq: weekly } 

In comparing this example to E3 we find that only the 
value of the “freq” slot is different. As in the second 

example, this results in the possibility that the two values 
“daily” and “weekly” belong to some superclass. Ac- 
cordingly, the hypothesis-space for manual-add-and-edit 
is augmented to reflect this possibility, and the corre- 
sponding changes are induced in the generalization hier- 
archy. Finally, this is a negative instance with respect to 
the hypothesis space for tl. In this case, it has no effect 
on the hypothesis space of t, . 

To summarize, the concept formation problem de- 
scribed above has the following features. An example, 
reflecting a design decision, leads to the construction of a  
lattice structure called a hypothesis space which is inter- 
preted as a partial order of plausible concepts that account 
for the decision. Subsequent examples refine the hypoth- 
esis space. Specifically, positive instances suggest higher 
order concepts which result in an expansion of the tax- 
onomy of objects. Negative instances are used to elimi- 
nate concepts previously hypothesized to differentiate be- 
tween design decisions. In this way the taxonomy of 
objects is refined, with the expectation that the irrelevant 
concepts will be eliminated as plausible differentiators, 
enabling the system to converge on rules at the approxi- 
mate level of generality. 

B. System-Generated Examples 
Like other learning formalisms that generalize from ex- 

amples, the effectiveness of our model is sensitive to the 
nature of the examples. If provided with “good” exam- 
ples, the model converges quickly on the right hypothesis 
for a  decision; for our problem, the best discriminatory 
power results from examples where situations varying 
only in a few attribute values require different decisions 
(the negative instances). However, in general, the strat- 
egy above cannot guarantee that the system will converge 
on the most appropriate hypothesis in each hypothesis 
space based on design observations alone. 

One way for the system to overcome total reliance on 
the designer’s examples is to generate additional exam- 
ples that will help it discriminate among competing hy- 
potheses in each space. Since the real discriminating 
power is provided by negative instances, it makes sense 
to try and generate descriptions that will prove to be neg- 
ative instances in the various hypothesis spaces. To illus- 
trate, consider Fig. 14 where there are several competing 
hypotheses for Auto-Load-and Edit. Suppose the sytem 
wants to establish the node marked “X” as the correct 
hypothesis for Auto-Load-and-Edit (reasons for why X are 
explained shortly). To generate a negative example, the 
system picks the “corresponding node” (marked “Y” in 
Fig. 1.5) from another hypothesis space. The system thus 
generates the example, posed as a query to the user: 

For ( dataflow 
from: ? 
medium: paper 
priority: ?  
freq: ? } 

W ill you do Auto-Load-and-Edit? 
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from: London 
medium : computerized PriOritJ : high 
frcq : dallJ 

from: ? 
medium: computerized 
PrlOritJ : high 

I 

II 

from. London 
medium: computerized 
PriOritJ: bi@ 
*l-.0: ? 

computerized medium: computerized 
I 
medium: computerized 

:J: ? PriOritJ: high PriOritJ: ? I 

_- -- --- 
Fig. 14. Hypothesis space for auto-load-and-edit after &. 

1*rr1 0 

1*rr1 3 

Lee----,’ 

Fig. 15. Hypothesis space for manual-add-and-edit (tZ) after E,. Compar- 
ison of this hypothesis space with that oft, leads to the removal of the 
dotted area from both hypothesis spaces. 



www.manaraa.com

224 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988 

Fig. 16. Generalization hierarchy after E,. 

If the user’s response is negative, it is clear that the 
node marked as “X” represents the most general correct 
hypothesis for Auto-Load-and-Edit. In this example, it 
means that the value of the “medium” slot is the sole 
discriminator in deciding on Auto-Load-an-Edit instead 
of Manual-Add-and-Edit. On  the other hand, if the user 
responds in the affirmative, further querying is needed. 

The above scenario raises two questions: 1) how does 
the system generate the example? and 2) what happens if 
the example turns out to be a positive training instance 
(i.e., the user’s response is affirmative)? 

To generate examples, one could begin with either the 
most general or the most specific element of a given hy- 
pothesis space. If we begin with the most general situa- 
tion and the user responds negatively to the example, the 
node can be established as characterizing the most appro- 
priate general class of situations for which the design de- 
cision is valid. Since we are trying to generate a negative 
instance, the node in the example is actually picked from 
another hypothesis space (Fig. 15)-a node that “corre- 
sponds” to X (Fig. 14). This corresponding node, marked 
“Y” in Fig. 15 (level 3), is at the same level of generality 
as X; only the value(s) of the discriminating slot(s) are 
different. 

In addition to a method for choosing an initial hypoth- 
esis, the system must also have a search strategy for ex- 
ploring the remaining nodes if its initial examples prove 
to be positive training instances. There are several ways 
to organize the search, the extremes being depth-first and 
breadth-first. We employ a breadth-first strategy. The jus- 
tification for this is that in a design organized in terms of 
incremental transform of data, differences in one or only 
a small number of attribute-value pairs are likely to dis- 
criminate among the transformations. If the example 
above had proved to be a positive instance, the system 
would have generated another query using the “X2” in 

Fig. 14 as the situation in the example query, before pro- 
ceeding to a more specific level. 

To summarize the querying mechanism, the system at- 
tempts to establish a node at the most general level in one 
hypothesis space as the correct (characterization of the) 
situation. To accomplish this, the system generates an ex- 
ample, using as the situation a corresponding node in an- 
other hypothesis space, and attempts to establish via a 
query, whether the example is a positive or negative train- 
ing instance with respect to the decision of that space. 
Further examples are generated using a breadth-first strat- 
ea. 

Fig. 17 shows a generalization hierarchy where those 
nodes in Fig. 16 that are not relevant to the design deci- 
sions in the examples have been eliminated. As we can 
see, the hierarchy represents the general situations that 
underly that part of the design used in the examples. It is 
identical to Fig. 10. 

V. DISCUSSION 

Some key aspects of the REMAP architecture-the ob- 
ject-oriented knowledge representation, the belief main- 
tenance component, and the learning component-have 
been implemented in a Lisp environment. Design objects 
are represented using FLAVORS [26], a Lisp-based util- 
ity that supports object-oriented programming. In addi- 
tion, dependencies are represented using the Reasoning 
Utility Package [21]. A designer interface and further re- 
finements to the learning algorithms are under develop- 
ment. In a related project [ 171, the integration of these 
concepts with advanced knowledge representation lan- 
guages for software development (RML [6] and TAXIS 
[29]), and with the DBPL database programming lan- 
guage [ 131 is studied to form a development and mainte- 
nance environment for database-intensive information 
systems software. 
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Fig. 17. Final generalization hierarchy corresponding to the design ex- 
amples. 

The REMAP formalism can be viewed as a knowledge- 
based tool for the representation and maintenance of de- 
sign process knowledge, to be employed as part of an in- 
tegrated software development and maintenance environ- 
ment. The importance of REMAP’s objectives is 
confirmed by two recent requirements studies on specifi- 
cation-based computing environments [2] and on artificial 
intelligence tool for design support in general (as con- 
trasted to information systems design) [28]. Reference [2] 
emphasizes the need for supporting systems evolution at 
a high level design level as well as the software level. In 
particular, they suggest that design tools should be 
changeable, and that inter-user interaction should be sup- 
ported. We believe that REMAP contributes primarily to 
the first goal by synthesizing an evolving object type hi- 
erarchy (which for instance, would allow the definition of 
a new design language other than data flow diagrams) rel- 
evant to the application domain. The second goal is par- 
tially achieved by allowing for each designer’s justifica- 
tions for design fragments to be made explicit. Reference 
[28] also stresses the need for making design goals, de- 
sign decisions, and their justifications explicit. 

In contrast to these recognized demands, existing da- 
tabases or knowledge bases for software development tend 
to focus on the management of design objects rather than 
on the process knowledge captured by REMAP. Design 
databases evolved from the data dictionary concept which 
provides system-wide management of data structures as 
an aid in keeping notation in the systems designs and pro- 
grams “consistent. ” It was soon realized that the data 
dictionary idea also applied to the management of pro- 
cess/module libraries [30], and to other design objects at 
higher levels of abstraction. Integrated environments such 
as TRW’s Software Productivity System [4] or 
TEDIUM [3] also allow the designer to relate design ob- 

jects, programs, and test cases or requirements specifi- 
cations. However,  these systems are somewhat handi- 
capped by the lack of a precise requirements specification 
language [5], and because the relationship between re- 
quirements and designs is not explained in terms of design 
decisions and their justifications. 

Proponents of prototyping [31] claim that systems 
changeability is automatically achieved or substantially 
supported through the prototyping process and cite case 
studies in support of this claim [ 11. However,  others have 
recognized that in complex systems, the prototyping idea 
must be applied at multiple levels of abstraction [ 151. This 
in turn, requires substantial control of the process, taking 
into account the design justifications and rules learned 
from errors in previous prototypes [lo]. While some re- 
searchers claim that such control can be provided by do- 
main or other technique specific standards, policies, and 
constraints to be enforced in the development and main- 
tenance environment [18], [23], [27], this approach as- 
sumes that such constraints can be enumerated a priori. 
A more ambitious approach, embodied in the PLEXSYS 
project [19] integrates constraint management into a full 
design support environment. PLEXSY S’ dynamic meta- 
systems [20] have represented application-specific knowl- 
edge in terms of an “axiomatic” model that can propa- 
gate certain types of changes to the object level where 
design decisions are represented. This approach is similar 
in spirit to that of TEIRESIAS [8], which uses a “meta 
model” to maintain and reason about object level knowl- 
edge contained in the MYCIN system [34]. Several other 
knowledge base management components of AI systems 
have been structured along similar lines. 

While this approach has proven successful in situations 
where the scope of applications known to the meta-model 
can be defined in advance, it has fundamental limitations 



www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988 

if the application domain is not known a priori. Under 
such circumstances, the high level model, even if defin- 
able, may become general to the point of missing the sub- 
tleties involved in an application area. What is needed 
instead, is a mechanism by which the high level model 
itself can be synthesized on the basis of experience in the 
application area. Consequently, REMAP follows an 
“open systems” approach [16] that begins by represent- 
ing knowledge about relationships among instances in a 
domain in terms of dependencies, and generalizes some 
of these into a growing corpus of rules. In this way, the 
process knowledge involved in building an application can 
be used for incremental modification of designs, and 
where possible, to acquire knowledge in terms of appli- 
cation specific rules. 

orientation can be of particular importance in the presence 
of multiple designers since many apparent “logical con- 
tradictions” may arise as a result of different perspec- 
tives, each based on a different set of assumptions. 

Methodologically, the instance level operations of our 
approach have much in common with those of the Pro- 
grammer’s Apprentice (PA) project [32], [36], [33]. The 
PA is an intelligent system that is designed to assist expert 
programmers with the maintenance of large programs. 
Like REMAP, the PA uses a dependency network of 
choices in order to represent and reason abut evolving 
programs. However, there are two important differences. 
Our focus is on the more abstract parts of the design as 
well as on the level of coding. More importantly, because 
of the diversity of applications, we are unable to assume 
a fixed library of “cliches” or programming constructs, 
but had to develop a learning method to build up this 
knowledge on the basis of specific designs. However, 
once our system has constructed and organized a library 
of cliches, they could be used to reason about “analo- 
gous” situations in a similar manner as the PA. 

From a practical viewpoint, the emphasis on design 
changes is of particular importance since it is estimated 
that at least 50 percent and probably as much as 70 per- 
cent of software costs go into maintenance. The work re- 
ported here is considered a first step toward a process- 
oriented design environment which is expected to have 
important applications in at least three areas. First, the 
prototyping method of systems development is enhanced 
by a learning component that prevents the repetition of 
design errors and supports a better formal understanding 
of the system’s domain. Second, the undesirable practice 
of just updating program documentation in the mainte- 
nance phase of the software life cycle is replaced by a 
methodology for maintaining consistent designs; finally, 
the formalism provides a way of assessing the ramifica- 
tions of real or proposed changes. 

Finally, the analogy-based reasoning component of the 
method can support the reuse of designs in systems that 
are similar to existing ones. It also provides the designer 
of such systems with access to the justifications for the 
original design, thus permitting the encapsulation of re- 
quired design differences and the identification of suitable 
alternatives. This controlled “cloning” capability is par- 
ticularly valuable in organizations that have to construct 
a large number of functionally similar systems for differ- 
ent divisions. If process knowledge is not maintained au- 
tomatically, such organizations have to rely on the expe- 
rience and loyalty of a few key individuals. 

In concluding this section, we should distinguish be- 
tween the analogical reasoning procedure described here 
for applying experience to new design decisions, and the 
learning by analogy procedures of [37] and others. In an- 
alogical learning, there is typically a domain where a 
known theory already exists in the form of rules or some 
other convenient representation; examples from this do- 
main are then matched with examples from a domain in 
which the learning is to occur. In contrast, our learning 
scheme involves a novel combination of “learning by ob- 
servation” and “learning by being told” which supports 
the acquisition of new terminology along with the recog- 
nition of conceptual structures and rules. In this way, our 
approach differs both from pure learning-by-example 
methods where no existing theory is assumed [22], [7], 
and from theory-based learning [25] where a good under- 
standing of either the domain itself, or at least of an anal- 
ogous domain is needed. 
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