
www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

Dependency D irected Reasoning and Learning in
Systems Maintenance Support

VASANT DHAR AND MATTHIAS JARKE

211

Absrracl-The maintenance of large information systems involves
continuous modifications in response to evolving husiness conditions or
changing user requirements. Based on evidence from a case study, we
show that the systems maintenance activity would benefit greatly if the
process knowledge reflecting the teleology of a design could be captured
and used in order to reason about the consequences of changing con-
ditions or requirements. We describe a formalism called REMAP
(REpresentation and MAintenance of Process knowledge) that accu-
mulates design process knowledge to manage systems evolution. To ac-
complish this, REMAP acquires and maintains dependencies among
the design decisions made during a prototyping process, and is able to
learn general domain-specific design rules on which such dependencies
are based. This knowledge cannot only be applied to prototype refine-
ment and systems maintenance, but can also support the reuse of ex-
isting design or software fragments to construct similar ones using an-
alogical reasoning techniques.

Index Terms-REMAP, systems maintenance support.

I. INTRODUCTION

M ETHODS for the analysis and design of information
systems are often effective in developing initial de-

signs but rarely support the correction of design errors or
changes in. previous design choices due to changing re-
quirements. As a result, changes in system design tend to
be unprincipled, ad hoc, and error prone, failing to take
cognizance of the justijications for previous design deci-
sions. In this paper, we examine some of these shortcom-
ings and present a knowledge based system architecture
called REMAP that strives to alleviate these problems.
REMAP supports an iterative design and maintenance
process by preserving the knowledge involved in the ini-
tial and evolving design, and making use of this knowl-
edge in analogous design situations.

The research that led to the REMAP architecture was
stimulated by our study of a complex system development
effort (several related systems with hundred-thousands of
l ines-of-code each). This study revealed several types of
process knowledge that are instrumental in developing and
maintaining such systems. First, the design process con-
sists of a sequence of interdependent design decisions.
The dependencies among decisions are typically based on

Manuscript received August 30, 1985; revised August 29, 1986.
V. Dhar is with the Department of Information Systems, Graduate School

of Business Administration, New York University, 624 Tisch Hall, 40 West
4th Street, New York, NY 10003.

M. Jarke is with the Department of Computer Science, University of
Passau, Passau, West Germany.

IEEE Log Number 8718388.

application-specific justifications. In the case study, such
justifications were frequently laid down on paper in de-
sign documents. While general domain-dependent rules
typically underlie these justifications, these rules are sel-
dom articulated explicitly by users or analysts. Second,
when systems are developed in a piecemeal fashion fol-
lowing the prototyping idea, analysts apply analogies to
transfer experience gained from one subsystem to “sim-
ilar components” of another.

It is the purpose of this paper to demonstrate-by ana-
lyzing the evidence from our case study, by developing
the REMAP architecture and by presenting the most cru-
cial parts of its implementation-that the development and
maintenance process would benefit if this knowledge
about dependencies and the general bases for them could
be accumulated in an appropriate form, and used to reason
about subsequent design changes. Specifically, this paper
argues that a knowledge based support tool for this must
have the following architectural components:

1) a classification of application specific “concepts”
into a taxonomy of design objects, and mechanisms for
elaborating this structure as more knowledge is acquired
by the system.

2) a representation for design dependencies and mech-
anisms for tracing repercussions of changes in design.

3) a learning mechanism for extracting general rules
from dependencies, associated with a mechanism to check
new design objects or dependencies for consistency with
the rules.

4) an analogy based mechanism for detecting similar-
ities among parts of similar subsystems. This mechansim
should make use of the classification in the generalization
hierarchy to draw analogies between systems parts.

We describe each of these components in terms of the
specific feature of process knowledge that they deal with
and how this knowledge is represented. In order to estab-
lish a sufficiently rich context for discussion, the exam-
ples are parts of the design that were actually developed
in an oil company. For readability, these examples are
only represented graphically as data flow diagrams at a
high level of abstraction. However, as described in Sec-
tion III of the paper, the internal knowledge representa-
tion of REMAP is object-oriented and can accommodate
a wide range of practically useful languages for require-
ments analysis, system design, and programming.

The remainder of this paper is organized as follows.

009%5589/88/0200-021 l$Ol.OO 0 1988 IEEE

www.manaraa.com

212 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

Section II begins with detailed real-world examples that
are used to show the need to maintain process knowledge
and to identify different kinds of such knowledge. The
REMAP architecture is presented in Section III. Section
IV describes in detail the learning component as a central
part of the architecture. Section V provides a discussion
relating the model to previous work in systems analysis
and artificial intelligence. We conclude with a summary
of possible applications which may benefit from the RE-
MAP approach.

II. CLASSIFICATION OF DESIGN PROCESS KNOWLEDGE

In this section, examples from a case study in the oil
industry are used to illustrate different forms of process
knowledge. Four classes are identified: specific knowl-
edge about design dependencies (at the level of in-
stances), general knowledge about design rules, knowl-
edge about the essentiality of conditions for certain design
decisions, and knowledge about analogical properties be-
tween design situations.

A. The Case Study
The problem studied in the oil company involves the

desin and subsequent maintenance of a series of sales ac-
counting systems for different products of the company,
here referred to as OC. OC sells oil and natural gas-based
products with different characteristics to its subsidiaries
and to outside customers in different parts of the world.
Sales Accounting at OC’s Corporate Headquarters re-
quires generating various integrated reports for purposes
of audit and control. Input to Sales Accounting is based
on invoices generated from transactions in a number of
offices in the U.S. and abroad.

For the sake of readability, we describe systems using
the structured analysis representation [9], [141. However,
the problems described in this section and our approach
toward solving them are not confined to this representa-
tion.

In structured analysis, systems designs are described in
terms of data flow diagrams at various levels of abstrac-
tion. A data flow diagram is a network where the nodes
represent processes, external entities, or data stores (files),
and directed arcs represent the data flows from one node
to another. Process nodes are frequently called “bub-
bles”; each bubble can be decomposed into a lower-level
data flow diagram. Rubbles at the bottom level have as-
sociated minispecs on which the program designs are
based. Data flow and data store information is managed
in data dictionaries. Fig. 1 shows the notational conven-
tions used in this paper.

Part of the structured top-down design of OC’s Sales
subsystem is illustrated in Figs. 2-5. Fig. 2 shows a con-
text diagram which depicts the relationship of the system
to external entities. Figs. 3, 4, and 5 are data flow dia-
grams for levels 1 and 2 of the sales system. Further de-
composition and implementation, possibly using different
languages, would finally lead to a working system; how-

UOII) . : BAT. rwv

Fig. 1. Data flow diagram conventions.

Fig. 2. Sales accounting systems context diagram

ever, the level of detail given in Figs. 2-5 is sufficient to
describe the problems of systems maintenance and our so-
lution to them.

We now illustrate the problem of design adaptation
using three scenarios. Each requires a different extent of
modification to the original design, and illustrates the need
for a different aspect of process knowledge. All of the
examples involve external requirements changes but sim-
ilar problems also occur during the refinement cycle.

B. The Role of General and Specijc Knowledge
London Sends Formatted Invoices: In the original de-

sign, the difference between the New York and London
invoices was that the former were accessable formatted
whereas the latter were received unformatted, on mag-
netic tape. Hence, a minor “convert” operation was re-
quired to bring the inputs into a format required by the
“verify and correct on line” operation (bubble 1.1)

As a simple change, suppose that the. London office be-

www.manaraa.com

DHAR AND JARKE: DEPENDENCY DIRECTED REASONING AND LEARNING 213

I 1
Fig. 3. Fuel sales (initial).

+
Fig. 4. Auto-load-and-edit.

gins to send correctly formatted invoices on magnetic tape
to central headquarters. What kinds of design modifica-
tions are required?

It is clear that the change is not at a high enough level
to affect the more abstract part of the design in Fig. 3.
However, at the next lower level (Fig. 4), the “convert”
bubble is not required anymore since the London invoices
should now proceed directly for verification.

In order to be able to assimilate this minor change, a
designer must know that in the existing design, the con-
vert bubble is dependent on the nature (i.e., unformatted)
of the dataflows representing London invoices. On recog-

Fig. 5. Manual-add-and-edit.

nizing that London invoices are no longer unformatted, it
should be able to detect the fact that conversion is unnec-
essary. Further, he should also know that in general, for-
matted invoices proceed directly for on-line verification.
Based on this, he should direct London invoices to the
“verify and correct on line” operation.

In summary, we have used two types of knowledge in
understanding the existing design and the effects of
changes to it: general knowledge about domain-specific
constraints (i.e., unformated invoices require conver-
sion), and specijic knowledge about the purpose of exist-
ing design objects in the form of justifications for existing
design choices (i.e., the existence of the convert bubble
in Fig. 4 depends on the existence of unformatted in-
voices).

www.manaraa.com

214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

C. The Role of Essentiality
London and Tokyo Will Not Sell Fuels Anymore: This

represents a more radical type of change than the first.
Intuitively, it seems clear that major design modifications
are needed at several levels of analysis, design, and im-
plementation. For example, lack of invoices from Tokyo
obviates the need for a manual add and edit operation at
level 1 (a manual input operation was required because
these were paper invoices). However, the auto load and
edit is still required because New York invoices must still
be processed.

This example illustrates the idea of essentiality in de-
sign; the Tokyo invoices dataflow was an essential input
for manual add and edit. In a more general sense, the pur-
pose of a manual add and edit operation was to process
paper invoices. The other inputs to it (the discount pay-
able slips, codes and expenses) were auxiliary, and in fact
dependent on Tokyo invoices.’ In effect, bubble 1 stays
(although some of its lower level components correspond-
ing to London operations are removed), while bubble 3
must be deleted. The revised level 1 dataflow design is
shown in Fig. 6.

It should also be noted that although the manual add
and edit operation is no longer necessary, some of the
lower level operations associated with it are still required
in order to process New York invoices. At the program-
ming level, this means that the code corresponding to
those operations is not deleted since it is shared with the
auto load and edit process.

D. The Role of Analogy
The Venezuela Ofice Will Sell Fuels: This corresponds

to a high level change this is likely to induce widespread
changes into the existing design. First, some additions
must be made at level 1. The types of changes, however,
depend on the nature of the sales invoices from Vene-
zuela. If the invoices are computerized, an input into bub-
ble 1 is required whereas paper invoices would call for
introducing a manual add and edit operation. Similarly,
at the next lower level, the operations required would de-
pend on other, more detailed features of the invoices (i.e.,
are they formatted, unformatted, etc.).

This example illustrates the use of analogy in reasoning
about a new situation. Design additions at the various lev-
els depend on how “similar” the Venezuela invoices are
to existing ones, and the design ramifications of these
similarities and differences. This type of reasoning re-
quires a system to carry out an elaborate match between
design parts the system currently knows about, and a new
design in order to draw out their analogous features. Spe-
cifically, it requires some notion of what are the important
dimensions in the analogy being sought. In this example,
relevant attributes in drawing the analogy are the medium
of the invoices, that is, whether they are computerized or

‘This illustrates the “nonuniform” nature of dataflow diagram entities,
that is, relationships among “unconnected” entities, and the design con-
sequences that can emerge due to changes in them.

Fig. 6. Fuels
I I

sales (modified).

manual, and whether they are formatted. Once the impor-
tant features are realized, the design ramifications become
clear.

E. Summary: The Need for Teleological Knowledge

In walking through the examples, we have attached
fairly rich interpretations to the various design compo-
nents that are implicit in the design, i.e., not necessarily
represented or even representable in structures such as data
flow diagrams or any other purely outcome-oriented
knowledge representations. These interpretations derive
from the purpose of the application which cannot be de-
termined from looking at the resulting design alone. That
is, the design is an artifact [35] whose teleological struc-
ture is imposed by the designer’s conception of the prob-
lem. This conception may change repeatedly during the
evolutionary design process. In other words, there is no
a priori “theory” relating problems to designs; rather,
the justification for a particular design follows from a sub-
jective world-view of the designer.

If a support system is to be able to reason about the
types of changes illustrated in the examples, it must have
the knowledge that reflects the teleology of the design.
Because such highly contextual knowledge about a poten-
tial application area is impossible to design into a system
a priori, the knowledge must be acquired by the support-
ing system during system design. To do this, the program
must be equipped with mechanisms that enable it to learn
about design decisions in an application area that it knows
nothing about at the start of the design. It must then apply
this growing body of acquired knowledge to reason about
subsequent modifications to an existing design, or to con-
struct new designs based on new but similar requirements.
In the following section, we describe an architecture called
REMAP that is geared toward the extraction and manage-
ment of the process knowlege involved in systems devel-
opment and maintenance.

www.manaraa.com

DHAR AND JARKE: DEPENDENCY DIRECTED REASONING AND LEARNING 215

III. THE REMAP ARCHITECTURE

It is apparent from the examples that application-spe-
cific knowledge and experience plays a key role in rea-
soning about a design. This raises an important question,
namely, how can a system acquire such knowledge?

In most projects involving the construction of a knowl-
edge based system, the system builder constructs the
model of expertise by first specifying a representation, and
then accreting the knowledge base in accordance with the
precepts underlying the chosen representation. Unfortu-
nately, large scale application developments take place in
a wide variety of domains that may have little in common.
This uniqueness of each application situation discourages
construction of a knowledge base that might be valid for
a reasonable range of applications.

If a knowledge based system is to be able to support the
process of systems analysis and design, it must have an
initial representational framework, and mechanisms to
augment this f ramework with domain specific knowledge
that captures the purpose of design decisions and relation-
ships among them. As more is learned, it should be pos-
sible to use this process knowledge to reason about design
changes, and draw analogies in extending a design to deal
with new situations.

In the following subsections, we develop a knowledge
representation for this process knowledge, and present a
model of how it is used by the REMAP system architec-
ture. Each of the components of this architecture illus-
trates the use of a certain type of process knowledge. We
conclude the section by illustrating how these components
interact through a global control structure. A detailed ex-
ample of the most important subsystem within the archi-
tecture-the learning component-is presented in Section
IV.

A. Representing Design Outcomes Using Structured
Objects

The REMAP model centers around design objects. The
designer defines instances of such objects, and the RE-
MAP system maintains a generalization hierarchy of ob-
ject types. The structure of an object type definition in the
hierarchy is as follows:

OBJECT TYPE
type-name : < string >
child-of : < set of object types >
parent-of : < set of object types >
components: < set of slots >
operators : < set of procedures/methods >

The “child-of” and “parent-of” components position
an object type in the generalization hierarchy. “Compo-
nets” slots describe typical aspects of an object instance
of the given type. As an example, consider the initial top-
level definition of a generic object type.

OBJECT TYPE
type-name : generic-object
child-of : ()

parent-of : unknown
components: (identifier : < string >

type : <string>
because-of : < set of objects >)

operators : (define, remove)
This means that any object will have an identifier, a

type, and a “because-of” slot. The generic object type
has no parent, and its children are yet to be specified. The
“because-of” slot defines the r&son d’etre of an object
instance and will be further discussed in the next subsec-
tion.

A “generic” object provides very little structural in-
formation about its semantics. It is therefore useful to
specify subtypes for which additional slots are defined in
order to capture the meaning of object instances of such
a subtype. This can be represented using a generalization
hierarchy of object types as shown in Fig. 7. Some in-
stances of dataflows and transforms used in the three
scenarios of Section II are shown in Fig. 8.

In principle, the system could begin with the generic
object type and then learn all subtypes from scratch. Since
such a procedure would be rather cumbersome for the de-
signer, the system should be provided with an initial set
of object types useful for a broad range of domains, for
instance, those associated with the analysis, design, and
implementation languages in use. For example, if the de-
signer were to work with data flow diagrams, the initial
knowledge base of object types might contain the follow-
ing definitions (cf. Fig. 7):

OBJECT TYPE
type-name : dataflow
child-of : generic-object
parent-of : unknown
components: (part-of : dataflow;

medium : < string > ;
from, to : process)

operators : (redirect, nostart, noend)
OBJECT TYPE

type-name : transform
child-of : generic object
parent-of : (process, external, datastore)
components: (inputs, outputs : < set of dataflows >)
operators : ()

OBJECT TYPE
type-name : process
child of : transform
parent_of : unknown
components: (part-of : process)
operators : (expand, noinput, nooutput)

OBJECT TYPE
type-name : datastore
child-of : transform
parent-of : unknown
components: (data-structure :

< set of data elements >)
operators : (define-structure, noinput, nooutput)

www.manaraa.com

216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2. FEBRUARY 1988

Fig. 7. Initial object type hierarchies.

Fig. 8. Initial generalization hierarchy.

OBJECT TYPE
type-name : external-entity
child-of : transform
parent-of : unknown
components: ()
operators : ()

External entities could be further refined to data source,
data sink, and interactor. The slot value “unknown” re-
fers to the fact that the slot values should be, but have not
yet been, defined.

As an example of instance dejnitions, consider the fol-
lowing description of the “London” external entity and
one of the sales invoice dataflows generated by it (cf. Fig.
8).

(identifier : London
type : external-entity
because-of : ()
inputs : ()
outputs : (London-direct-sales-invoices,

London-assigned-sales-invoices,
London-statistical-sales-invoices)

{identifier : London-direct-sales-invoices
type : dataflow
because-of : (London)
part-of : ()
medium : magnetic tape
from : London
to : auto-load-and-edit}

Similarly, instances corresponding to other object types
can be defined. Note, that the instance definitions have all
the slots defined in their immediate type, as well as in-
heriting those of their supertypes.

Besides the definition of design objects, it is also pos-
sible to perform “syntactic” consistency checks using in-
formation in the hierarchy. As a simple example, if a bub-
ble has no inputs, it must be removed or new inputs must
be defined. However, certain types of application-specific
information are not maintained in this representation. For
instance, if London invoices become “formatted, ” ram-
ifications of this change cannot be assessed using the
knowledge in the hierarchy alone. To reason about such
situations, additional data structures are required, which
we describe in the following subsections.

B. Representing Design Processing Using Dependencies

REMAP views a design process as a set of interrelated
design decisions. Design decisions are represented in
terms of justified actions. An action consists of adding,
deleting or changing a design object; its justification con-
sists of previous actions. A design decision is represented
in REMAP as a two-part data structure called depen-
dency:

(< justification > = = > < action >)

where <justification > and C action > are references to
object instances.

To illustrate, consider Fig. 9 which shows a network of
dependencies among a few of the dataflows and bubbles
considered so far. Specifically, the auto-load-and-edit ob-
ject is justified by the existence of New York and London
invoices (both objects), which form its “set of support”
WI.

In order to demonstrate the usefulness of this depen-
dency network, reconsider the first scenario where the
London invoices become formatted. In this case, the con-
vert operation is no longer required since its essential sup-
port elements have been eliminated. Similarly, in the sec-
ond scenario where the London office does not sell fuels
anymore, no more invoices are generated from London.
Again, no conversion operation is required. However, the

www.manaraa.com

DHAR AND JARKE: DEPENDENCY DIRECTED REASONING AND LEARNING 217

- w :DlSFlUUDU A

Fig. 9. A dependency network.

auto load and edit operation is still required because New
York invoices are still to be processed.

In general, a dependency network can be used to assess
certain ramifications of a deletion or change in previous
design decisions. Such processes are commonly referred
to as belief maintenance [121. In the above example, con-
version is not required for London invoices. However, the
dependency network does not indicate how these invoices
should be treated because this knowledge is not expressed
in the network. In order to assess the complete repercus-
sions of the change, more general (object type level)
knowledge is required. For example, to realize that for-
matted London invoices should be treated like New York
invoices (and should proceed directly for verification), it
is necessary to know that in general formatted invoices
are verified directly. This knowledge can then be used to
reason about all object instances corresponding to for-
matted invoices.

C. Learning as Rule Formation

Dependency information as indicated in Fig. 9 is rep-
resented in terms of object instances. For example, the
auto-load-and-edit object (bubble 1) is justified by the two
kinds of dataflow objects originating from London. An
object type corresponding to this invoice dataflow might
have slots such as data, amount, frequency, and source.
However, not all slots are relevant to the justification. For
example, the auto-load-and-edit is performed because the
invoices are computerized, regardless of their other fea-
tures. A general rule that subsumes this dependency would
therefore state that computerized invoices require auto-
load-and-edit. It is the purpose of REMAP’s learning
component to acquire such rules.

In forming a rule, however, the system must first learn
the relevant category of object types (i.e., computerized
invoices) that will constitute the left-hand side of the rule.
If we consider “dataflow” as being a generic object with
the structure described earlier, what the system must do
is to form a specialization of it, where the specialization
involves restricting the value of one or more slots of the
generic object. For example, a computerized invoice can
be considered a specialization of the dataflow object with
the medium slot being restricted to values that belong to
the set “computerized entities” like disk or magnetic
tape.

Basically, the learning procedure views each depen-
dency (stated in terms of object instances) as a training
instance consisting of a situation object and an action ob-
ject. Each training instance has an associated hypothesis
space which consists of possible generalizations of the sit-
uation object. A training instance is termed positive with
respect to its action object, and negative with respect to
all others. As more and more examples (i.e., dependen-
cies) are provided in the course of a systems development
process, irrelevant elements of the various hypothesis
spaces are eliminated and the system converges on gen-
eralizations (i.e., type definitions and rules) that are con-
sistent with the examples. If a hypothesis space shrinks
to the point where no generalizations can be found, this
indicates inconsistencies in the design or in the design rule
base and must be corrected by the user. In order to accel-
erate convergence of the hypothesis space, REMAP can
provide system-generated examples for categorization as
positive or negative training instances by the user. The
learning procedure is described in detail in Section IV.

To summarize, the learning objective is twofold: to
form appropriate specializations of the predefined object
types relevant to the application domain, and to establish
relationships in the form of rules between these special-
ized object types. This results in a growing generalization
hierarchy such as that of Fig. 10, and in rules that are
applicable at various levels of abstraction.

D. Analogical Reasoning Using Object ClassiJication
and Rules

The effort of learning a flexible object type hierarchy
and general design rules associated with it pays off in two
ways. First, types and rules can be used to check the cor-
rectness of new design object instances added to a design.
The second advantage is less obvious but potentially more
important. When requirements changes demand the con-
struction of new design objects in addition to the removal
of existing ones, analogical reasoning methods can be
employed to explore the possibility of reusing fragments
of existing designs, based on the general knowledge ac-
quired by REMAP’s learning component.

For example, Section II-D introduced a scenario where
a new operation was added, namely, sales of fuels from
Venezuela. In order to assimilate such a change into an
existing design, a system must be able to utilize its knowl-

www.manaraa.com

218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

Fig. 10. Reconfigured generalization hierarchy.

edge concerning the purpose of “similar” design frag-
ments. Specifically, it must determine what attributes of
the new situation are the same as objects it already knows
about, and then treat the new object accordingly.

In order to categorize a new object, it is necessary to
first determine, if possible, the most specific level of ab-
straction in the generalization hierarchy that is applicable
to it. For example, if REMAP’s current knowledge about
dataflows is that shown in Fig. 10, and computerized but
unformated invoices come in on magnetic tape from Ven-
ezuela, they are classified as an instance of the magnetic-
tape-invoices type. Rules referencing this type can be ap-
plied to it in order to create new object instances auto-
matically .

If no rules are applicable to the newly defined object as
the most specific level, more general rules might be ap-
plicable. This involves moving up the generalization hi-
erarchy as long as applicable rules are found. In the ex-
ample, this involves gathering rules applicable to
magnetic-tape invoices, then computerized invoices, and
finally dataflows in general. For Venezuela invoices, we
can see that one of the rules mentioned in the previous
section will apply at the level of computerized invoices,
suggesting that the existing auto-load-and-edit operation
(or a new instance of it) be performed on them.

It should be noted that even though there may not be an
object in the current design that is similar to the new one,
existing rules learned during previous design processes
might still apply. For example, London invoices had been
originally unformatted; this had required a convert oper-
ation which was subsequently eliminated when the form
of these invoices was changed. However, since a rule on
formatted versus unformatted invoices was retained which
now becomes applicable to Venezuela invoices, the old
convert operation could be reinstalled, or a similar one
implemented if the formatting differs at a lower level of
abstraction than shown in our examples.

E. REMAP Control Structure
In order to incorporate new knowledge and to reason

about user critiques, REMAP requires an overall control
structure that enables it to switch among design support

VOL. 14, NO. 2, FEBRUARY

TYPE LEVEL
KNOWLEDGE BASE

FI-- -- ?

1988

L---2
INSTANCE LEVEL

KNOWLEXGE BASS

----t D*T*rLO”

Fig. 11. Summary of REMAP architecture.

and knowledge acquisition modes. Fig. 11 provides an
architectural summary of the system. The architecture
consists of five modes of operation and two knowledge
bases. One knowledge base describes the design objects
and dependencies at the instance level, whereas the other
one is a meta-knowledge base which contains the object
type hierarchy and the general design rules. We shall first
describe the functionality of the architecture for two typ-
ical scenarios and then present a semiformal summary of
the interaction of the modes in a structured-English no-
tation.

Consider first a scenario where the user wants to add a
new design object. The add mode accepts a design object
and its associated justification (i.e., a dependency plus
possibly a detailed description of the design object). The
analogical reasoning mode assists first in identifying the
type of objects. It then tries to apply design rules to gen-
erate additional objects dependent on the one entered by
the user. If the system has accumulated knowledge about

www.manaraa.com

DHAR AND JARKE: DEPENDENCY DIRECTED REASONING AND LEARNING 219

the application domain, rule application might continue
down to the implementation level. For each action, the
belief maintenance mode is responsible for entering ob-
jects and dependencies to the instance-level knowledge
base. If existing rules are not applicable to the new ob-
jects, the learning mode assumes control and attempts to
form a generalization (rule) from the dependency (this is
described in detail in Section IV). The learning model also
comes into play if a contradiction is encountered, in which
case it initiates interaction with the user in order to correct
the object instances, or to establish new rules and, if nec-
essary, specify new object types. The system then returns
to the belief maintenance mode in order to do the required
changes at the instance level and to trace the conse-
quences of the newly acquired knowledge, returning con-
trol to the analogical-construction-mode.

If parts of an existing design are to be removed, the
system will start in the critique mode. In this case, the
belief maintenance mode is responsible for tracing which
dependent objects can also be removed from the design,
by following the chains of dependencies in the instance-
level knowledge base. Updates to a given design object
can be considered as deletions followed by additions of
the new version.

We now give a high-level summary of the algorithms
underlying each mode. We should point out, however,
that the learning mode description will be more under-
standable after reading Section IV, which is a walk-
through of the algorithm using a detailed example.

Add-mode:
1. Accept object instance i and its justification object

J
2. Call Analogical-construction-mode (i, j).

Analogical-construction-mode (inst, just):
1. Position inst and just in type hierarchies, finding

types ti and tj.
2. Call Belief-maintenance-mode (‘ ‘add’ ‘, inst, just,

ti, tj).
3. FOR each rule r of form “ti = > x” or “tp = >

X 7,

where ti is a subtype of tp DO
IF an object instance corresponding to x does not
exist

THEN create object X.
Call Analogical-construction-mode (x, inst).

Delete/critique-mode:
1. Accept object o to be removed.
2. Call Belief-maintenance-mode (“del”, o, nil, nil,

nil).

Belief-maintenance-mode (op, inst, just, ti, tj):
1. IF op= “del”

THEN IF just = { }
THEN Remove inst from each set of sup-
port.

* Note that the description of inst is not
removed *\

FOR EACH object obj with empty set of
support DO
Call Belief-maintenance-mode (‘ ‘de1 ’ ‘, obj,
nil, nil, nil).

ELSE *op = “add” *\
Add just = > ist to the dependency base.
Add the description of inst to the design object
base.
Call Learn-mode (just, inst, ti, tj).

Learn-mode (i, j, ti, tj):
1. FOR EACH rule tj = > x where x incompatible with n

: L 6,
Request correction by user.

2. IF there exists a dependency k = = > i * positive
training instance *\

THEN IF new slots
THEN Establish new terminology with
user.

FOREACHx ==> y
IF ti = type of x * negative training in-
stance *\

and i incompatible with y
THEN Reduce hypothesis spaces for i and
Y.

3. Provide system-generated examples for further type
refinement.

IV. SYNTHESIZING THE GENERALIZATION HIERARCHY

Inferring plausible object types and rules from design
decisions (dependencies) can be considered a learning
task.3 It involves generalizing situations (the left-hand side
of the instance level dependency) into subtypes on which
design decisions (the right-hand side) might be based. For
example, if sales invoices coming from London are com-
puterized (a situation) and are processed directly by com-
puter (a decision), a plausible generalization is that com-
puterized invoices in general can be processed by
computer. It therefore makes sense to create a category
called “computerized invoices” and a general rule stating
that computerized invoices are to be processed directly.
These two types of knowledge can then be used to rec-
ognize new instances of such invoices, and how they are
to be processed. The problem of course, is to distinguish
among the important and the incidental attributes of the
situation.

Our approach to forming general descriptions is based
on the construction of a structured hypothesis space (a
lattice data structure) for each decision. This space con-
tains possible generalizations of situations for each deci-
sion. These generalizations are gradually eliminated or
refined with successive examples. For a design expressing

aA design object is called incompatible with another one if both consti-
tute alternative actions for the same situation. Without loss of generality,
actions that are not equal can always be considered incompatible if the right
level of abstraction is chosen.

‘We would like to acknowledge the significant input of Padmanbhan
Ranganathan in developing the learning strategies presented in this section.
These strategies are described in more detail in [I 11.

www.manaraa.com

220 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 2, FEBRUARY 1988

many situation-action pairs, the ultimate goal is to syn-
thesize a taxonomy of appropriate situation descriptions,
each corresponding to a decision expressed in the design.
Specifically, the aim is to synthesize a generalization hi-
erarchy of concepts relevant to the application domain that
contains general situation descriptions on which the de-
sign decisions are based.

Formally, a situation is characterized in terms of an in-
stance di of one of the object types in the existing hier-
archy described as in Section III-A. This object type,
hence called D, has slots sl, s2, s3, * * * , sP. An instance
di consists of the set of pairs of properties { Sj : I/i,j > where
V, is the value of the j th slot. An operator that is appli-
cable to this situation is represented as tk. In the applica-
tion domain, di = = > tk represents a design decision to
perform tk in the situations described as di. If this first
example is followed by the example ‘ ‘dj = = > tk”, this
example represents a positive training instance for tk
whereas the example dj = = > tl represents a negative
training instance for tk. The learning goal is to converge
on those properties of examples that are, by themselves
or in combination, relevant to the design decisions, and
to acquire the necessary terminology interactively.

A. Designer Generated Examples

To introduce the learning model, consider some design
decisions made by a systems designer/analyst from the
sales accounting system. To keep the example clear, we
restrict the description of object type D (a special kind of
data flow) to four of the slots, namely, “from,” “me-
dium,” “priority,” and “frequency.” The first example,
designated El, corresponding to a small design fragment
from Fig. 3, is:

E, =
{d,

from: London
medium: magtape
priority: high
frequency : daily >

= = > Auto-load-and-edit

where Auto-load-and-edit is an action performed on a da-
tatlow characterized by the left-hand side. The set
{from: London, medium:magtape, priority:high, fre-
quency:daily} represents the situation dl. The operator t,
that is applicable to dl is Auto-load-and-edit. Based on
this example alone, the following possibilities arise:

1) All pairs of d, are relevant in deciding on tl.
2) Only some combination of the pairs are relevant to

tl.
3) All pairs of d, are merely incidental, that is, t, is

performed on al2 instances of D regardless of their prop-
erties .4

A representation of the possibilities, the hypothesis

‘In this section, we ignore the case that a new slot might be necessary
to distinguish object subtypes. This case would simply be handled by user
intervention.

space of all possible rules based on the first example, is
shown in Fig. 12. A question mark indicates that there is
no restriction on the slot value. The figure represents a
hypothesis space for t, , extending from the most specific
hypothesis, at level 0, down to the most general one at
level 4.

It is worth contrasting such a hypothesis space with
those that are constructed using an a priori taxonomy of
object types such as is done in the learning system LEX
[24] where nodes represent situations characterized in
terms of the types in the existing taxonomy. We interpret
our hypothesis space in the same way, as consisting of
object types. The difference is that these types are imphcit
in our hypothesis space and need to be characterized ex-
plicitly . Specifically, the nodes contain specializations of
D, that is, subtypes with restrictions on values of certain
slots. In our example, nodes at level 1 are those where
values of any three slots have restricted values and the
fourth slot can take any value. Similarly, level 4 consists
of the most general object type, where values of all 4 slots
are unrestricted. In effect, each of the nodes in the hy-
pothesis space is a specialization of D, corresponding to
a particular object type. The generalization hierarchy cor-
responding to this hypothesis space is shown in Fig. 13.
In summary, an initial hypothesis space generates a crude
object taxonomy. As the space is refined, so is the tax-
onomy .

Now another example, again representing a design de-
cision, is presented.

E2 =
v2

from: London
medium: disk = = > Auto-load-and-edit
priority: high freq:daily }

Comparison to E, shows that only the value of the “me-
dium” slot is different. The second example calls for the
same right hand side and is therefore a positive training
instance with respect to E,. The fact that both left-hand
sides, which represent slightly different situations, have
the same right-hand side leads to the following possibili-
ties:

1) The values of the “medium” slot are irrelevant in
determining which operator is to be applied, since chang-
ing them made no difference to the action to be per-
formed.

2) Alternatively, the values may in fact be essential, if
they belong to some generic category which requires per-
forming t,. For example, “magtape” and “disk” could
both belong to a “superclass” called “computerized”
which could be what requires cl. This situation requires
creating a new term, in this case computerized, that will
characterize the new superclass. However since the sys-
tem has no domain knowledge for generating this type of
vocabulary, the system must query the user. If the user
responds with “computerized,” the system asks the user
to enumerate or characterize other members belonging to

www.manaraa.com

DHAR AND IARKE: DEPENDENCY DIRECTED REASONING AND LEARNlNG 221

1*r*1 0

1 rrt1 2

Fig, 12. Hypothesis space for auto-load-and-edit (t,) after E,

from’ London iron: Lolldon

i D t from: London ‘1

Fig. 13. Generalization hierarchy after E,. Nodes in the hierarchy are spe-
cializations of D where slot and value pairs on the right of the vertical
bar indicate restrictions on an object type. The lines joining the nodes
are IS-A Links.

www.manaraa.com

222 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

this class. This information can be used to recognize other
instances of the new class.

Both these possibilities are represented in the hypothe-
sis space. In the second case, certain nodes in the hypoth-
esis space are generated to accommodate the information
in the positive training instance. This is the well known
disjunctive problem which occurs in generalization from
examples.

The hypothesis space for t,, shown in Fig. 12, is now
refined to reflect these modifications. We have replaced
“magtape” by “computerized” in the relevant slots. This
change reflects a modification of the object types in the
hypothesis space as shown in Fig. 14. The generalization
hierarchy is reorganized accordingly to incorporate the
modified object type.

Now consider a third example:
E3

Id3
from: Tokyo
medium: paper = = > manual-add-and-edit
priority: high
freq: daily }

This instance is a negative example with respect to the
decision auto-load-and-edit. Comparison of this new
training instance with E, and E2 reveals the following:

1) The values of slots “priority”and “freq” are the
same in all three instances. This implies that the “prior-
ity” and ‘ ‘freq” pairs do not, by themselves or in com-
bination, discriminate in deciding which operator should
be applied.

2) The values of the slots “from” and “freq” could,
in conjunction with values of other slots, provide the jus-
tification for Manual-add-and-edit (t2).

In the light of the evidence from the third example, it
is apparent that object types corresponding to

DI DI DI
[priority: high lfreq : daily (priority: high

1 freq: daily
do not discriminate among the examples, and can there-
fore be eliminated from the two hypothesis spaces so far.
The nodes corresponding to these tyes are indicated in the
dotted section of Fig. 14. In the refined hypothesis spaces
of auto-load-and-edit and manual-add-and-edit (Fig. 15)
these nodes are marked as eliminated.

The generalization hierarchy, reflecting the refined hy-
pothesis spaces is also modified to that shown in Fig. 16.
It represents a union of the two hypothesis spaces.

As a final example, consider the following:
E4=

id4
from: Tokyo
medium: paper = = > Manual-add-and-edit
priority: high
freq: weekly }

In comparing this example to E3 we find that only the
value of the “freq” slot is different. As in the second

example, this results in the possibility that the two values
“daily” and “weekly” belong to some superclass. Ac-
cordingly, the hypothesis-space for manual-add-and-edit
is augmented to reflect this possibility, and the corre-
sponding changes are induced in the generalization hier-
archy. Finally, this is a negative instance with respect to
the hypothesis space for tl. In this case, it has no effect
on the hypothesis space of t, .

To summarize, the concept formation problem de-
scribed above has the following features. An example,
reflecting a design decision, leads to the construction of a
lattice structure called a hypothesis space which is inter-
preted as a partial order of plausible concepts that account
for the decision. Subsequent examples refine the hypoth-
esis space. Specifically, positive instances suggest higher
order concepts which result in an expansion of the tax-
onomy of objects. Negative instances are used to elimi-
nate concepts previously hypothesized to differentiate be-
tween design decisions. In this way the taxonomy of
objects is refined, with the expectation that the irrelevant
concepts will be eliminated as plausible differentiators,
enabling the system to converge on rules at the approxi-
mate level of generality.

B. System-Generated Examples
Like other learning formalisms that generalize from ex-

amples, the effectiveness of our model is sensitive to the
nature of the examples. If provided with “good” exam-
ples, the model converges quickly on the right hypothesis
for a decision; for our problem, the best discriminatory
power results from examples where situations varying
only in a few attribute values require different decisions
(the negative instances). However, in general, the strat-
egy above cannot guarantee that the system will converge
on the most appropriate hypothesis in each hypothesis
space based on design observations alone.

One way for the system to overcome total reliance on
the designer’s examples is to generate additional exam-
ples that will help it discriminate among competing hy-
potheses in each space. Since the real discriminating
power is provided by negative instances, it makes sense
to try and generate descriptions that will prove to be neg-
ative instances in the various hypothesis spaces. To illus-
trate, consider Fig. 14 where there are several competing
hypotheses for Auto-Load-and Edit. Suppose the sytem
wants to establish the node marked “X” as the correct
hypothesis for Auto-Load-and-Edit (reasons for why X are
explained shortly). To generate a negative example, the
system picks the “corresponding node” (marked “Y” in
Fig. 1.5) from another hypothesis space. The system thus
generates the example, posed as a query to the user:

For (dataflow
from: ?
medium: paper
priority: ?
freq: ? }

W ill you do Auto-Load-and-Edit?

www.manaraa.com

DHAR AND IARKE: DEPENDENCY DIRECTED REASONING AND LEARNING 223 I
from: London
medium : computerized PriOritJ : high
frcq : dallJ

from: ?
medium: computerized
PrlOritJ : high

I

II

from. London
medium: computerized
PriOritJ: bi@
*l-.0: ?

computerized medium: computerized
I
medium: computerized

:J: ? PriOritJ: high PriOritJ: ? I

_- -- ---
Fig. 14. Hypothesis space for auto-load-and-edit after &.

1*rr1 0

1*rr1 3

Lee----,’

Fig. 15. Hypothesis space for manual-add-and-edit (tZ) after E,. Compar-
ison of this hypothesis space with that oft, leads to the removal of the
dotted area from both hypothesis spaces.

www.manaraa.com

224 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

Fig. 16. Generalization hierarchy after E,.

If the user’s response is negative, it is clear that the
node marked as “X” represents the most general correct
hypothesis for Auto-Load-and-Edit. In this example, it
means that the value of the “medium” slot is the sole
discriminator in deciding on Auto-Load-an-Edit instead
of Manual-Add-and-Edit. On the other hand, if the user
responds in the affirmative, further querying is needed.

The above scenario raises two questions: 1) how does
the system generate the example? and 2) what happens if
the example turns out to be a positive training instance
(i.e., the user’s response is affirmative)?

To generate examples, one could begin with either the
most general or the most specific element of a given hy-
pothesis space. If we begin with the most general situa-
tion and the user responds negatively to the example, the
node can be established as characterizing the most appro-
priate general class of situations for which the design de-
cision is valid. Since we are trying to generate a negative
instance, the node in the example is actually picked from
another hypothesis space (Fig. 15)-a node that “corre-
sponds” to X (Fig. 14). This corresponding node, marked
“Y” in Fig. 15 (level 3), is at the same level of generality
as X; only the value(s) of the discriminating slot(s) are
different.

In addition to a method for choosing an initial hypoth-
esis, the system must also have a search strategy for ex-
ploring the remaining nodes if its initial examples prove
to be positive training instances. There are several ways
to organize the search, the extremes being depth-first and
breadth-first. We employ a breadth-first strategy. The jus-
tification for this is that in a design organized in terms of
incremental transform of data, differences in one or only
a small number of attribute-value pairs are likely to dis-
criminate among the transformations. If the example
above had proved to be a positive instance, the system
would have generated another query using the “X2” in

Fig. 14 as the situation in the example query, before pro-
ceeding to a more specific level.

To summarize the querying mechanism, the system at-
tempts to establish a node at the most general level in one
hypothesis space as the correct (characterization of the)
situation. To accomplish this, the system generates an ex-
ample, using as the situation a corresponding node in an-
other hypothesis space, and attempts to establish via a
query, whether the example is a positive or negative train-
ing instance with respect to the decision of that space.
Further examples are generated using a breadth-first strat-
ea.

Fig. 17 shows a generalization hierarchy where those
nodes in Fig. 16 that are not relevant to the design deci-
sions in the examples have been eliminated. As we can
see, the hierarchy represents the general situations that
underly that part of the design used in the examples. It is
identical to Fig. 10.

V. DISCUSSION

Some key aspects of the REMAP architecture-the ob-
ject-oriented knowledge representation, the belief main-
tenance component, and the learning component-have
been implemented in a Lisp environment. Design objects
are represented using FLAVORS [26], a Lisp-based util-
ity that supports object-oriented programming. In addi-
tion, dependencies are represented using the Reasoning
Utility Package [21]. A designer interface and further re-
finements to the learning algorithms are under develop-
ment. In a related project [171, the integration of these
concepts with advanced knowledge representation lan-
guages for software development (RML [6] and TAXIS
[29]), and with the DBPL database programming lan-
guage [131 is studied to form a development and mainte-
nance environment for database-intensive information
systems software.

www.manaraa.com

DHAR AND JARKE: DEPENDENCY DIRECTED REASONING AND LEARNING 225

RANUAL-ADD-
==’ AND-EDIT

medium paper
priority rugh
frequency dally)

{d 4
from Tokyo
odium paper
prronty hg.h
frequency weekly

Fig. 17. Final generalization hierarchy corresponding to the design ex-
amples.

The REMAP formalism can be viewed as a knowledge-
based tool for the representation and maintenance of de-
sign process knowledge, to be employed as part of an in-
tegrated software development and maintenance environ-
ment. The importance of REMAP’s objectives is
confirmed by two recent requirements studies on specifi-
cation-based computing environments [2] and on artificial
intelligence tool for design support in general (as con-
trasted to information systems design) [28]. Reference [2]
emphasizes the need for supporting systems evolution at
a high level design level as well as the software level. In
particular, they suggest that design tools should be
changeable, and that inter-user interaction should be sup-
ported. We believe that REMAP contributes primarily to
the first goal by synthesizing an evolving object type hi-
erarchy (which for instance, would allow the definition of
a new design language other than data flow diagrams) rel-
evant to the application domain. The second goal is par-
tially achieved by allowing for each designer’s justifica-
tions for design fragments to be made explicit. Reference
[28] also stresses the need for making design goals, de-
sign decisions, and their justifications explicit.

In contrast to these recognized demands, existing da-
tabases or knowledge bases for software development tend
to focus on the management of design objects rather than
on the process knowledge captured by REMAP. Design
databases evolved from the data dictionary concept which
provides system-wide management of data structures as
an aid in keeping notation in the systems designs and pro-
grams “consistent. ” It was soon realized that the data
dictionary idea also applied to the management of pro-
cess/module libraries [30], and to other design objects at
higher levels of abstraction. Integrated environments such
as TRW’s Software Productivity System [4] or
TEDIUM [3] also allow the designer to relate design ob-

jects, programs, and test cases or requirements specifi-
cations. However, these systems are somewhat handi-
capped by the lack of a precise requirements specification
language [5], and because the relationship between re-
quirements and designs is not explained in terms of design
decisions and their justifications.

Proponents of prototyping [31] claim that systems
changeability is automatically achieved or substantially
supported through the prototyping process and cite case
studies in support of this claim [11. However, others have
recognized that in complex systems, the prototyping idea
must be applied at multiple levels of abstraction [151. This
in turn, requires substantial control of the process, taking
into account the design justifications and rules learned
from errors in previous prototypes [lo]. While some re-
searchers claim that such control can be provided by do-
main or other technique specific standards, policies, and
constraints to be enforced in the development and main-
tenance environment [18], [23], [27], this approach as-
sumes that such constraints can be enumerated a priori.
A more ambitious approach, embodied in the PLEXSYS
project [19] integrates constraint management into a full
design support environment. PLEXSY S’ dynamic meta-
systems [20] have represented application-specific knowl-
edge in terms of an “axiomatic” model that can propa-
gate certain types of changes to the object level where
design decisions are represented. This approach is similar
in spirit to that of TEIRESIAS [8], which uses a “meta
model” to maintain and reason about object level knowl-
edge contained in the MYCIN system [34]. Several other
knowledge base management components of AI systems
have been structured along similar lines.

While this approach has proven successful in situations
where the scope of applications known to the meta-model
can be defined in advance, it has fundamental limitations

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

if the application domain is not known a priori. Under
such circumstances, the high level model, even if defin-
able, may become general to the point of missing the sub-
tleties involved in an application area. What is needed
instead, is a mechanism by which the high level model
itself can be synthesized on the basis of experience in the
application area. Consequently, REMAP follows an
“open systems” approach [16] that begins by represent-
ing knowledge about relationships among instances in a
domain in terms of dependencies, and generalizes some
of these into a growing corpus of rules. In this way, the
process knowledge involved in building an application can
be used for incremental modification of designs, and
where possible, to acquire knowledge in terms of appli-
cation specific rules.

orientation can be of particular importance in the presence
of multiple designers since many apparent “logical con-
tradictions” may arise as a result of different perspec-
tives, each based on a different set of assumptions.

Methodologically, the instance level operations of our
approach have much in common with those of the Pro-
grammer’s Apprentice (PA) project [32], [36], [33]. The
PA is an intelligent system that is designed to assist expert
programmers with the maintenance of large programs.
Like REMAP, the PA uses a dependency network of
choices in order to represent and reason abut evolving
programs. However, there are two important differences.
Our focus is on the more abstract parts of the design as
well as on the level of coding. More importantly, because
of the diversity of applications, we are unable to assume
a fixed library of “cliches” or programming constructs,
but had to develop a learning method to build up this
knowledge on the basis of specific designs. However,
once our system has constructed and organized a library
of cliches, they could be used to reason about “analo-
gous” situations in a similar manner as the PA.

From a practical viewpoint, the emphasis on design
changes is of particular importance since it is estimated
that at least 50 percent and probably as much as 70 per-
cent of software costs go into maintenance. The work re-
ported here is considered a first step toward a process-
oriented design environment which is expected to have
important applications in at least three areas. First, the
prototyping method of systems development is enhanced
by a learning component that prevents the repetition of
design errors and supports a better formal understanding
of the system’s domain. Second, the undesirable practice
of just updating program documentation in the mainte-
nance phase of the software life cycle is replaced by a
methodology for maintaining consistent designs; finally,
the formalism provides a way of assessing the ramifica-
tions of real or proposed changes.

Finally, the analogy-based reasoning component of the
method can support the reuse of designs in systems that
are similar to existing ones. It also provides the designer
of such systems with access to the justifications for the
original design, thus permitting the encapsulation of re-
quired design differences and the identification of suitable
alternatives. This controlled “cloning” capability is par-
ticularly valuable in organizations that have to construct
a large number of functionally similar systems for differ-
ent divisions. If process knowledge is not maintained au-
tomatically, such organizations have to rely on the expe-
rience and loyalty of a few key individuals.

In concluding this section, we should distinguish be-
tween the analogical reasoning procedure described here
for applying experience to new design decisions, and the
learning by analogy procedures of [37] and others. In an-
alogical learning, there is typically a domain where a
known theory already exists in the form of rules or some
other convenient representation; examples from this do-
main are then matched with examples from a domain in
which the learning is to occur. In contrast, our learning
scheme involves a novel combination of “learning by ob-
servation” and “learning by being told” which supports
the acquisition of new terminology along with the recog-
nition of conceptual structures and rules. In this way, our
approach differs both from pure learning-by-example
methods where no existing theory is assumed [22], [7],
and from theory-based learning [25] where a good under-
standing of either the domain itself, or at least of an anal-
ogous domain is needed.

REFERENCES

[l] D. S. Appleton, System 2000 Database Management System, Guide
37, Cambridge, MA, in Nov. 1973.

[2] R. Balzer, D. Dyer, Fehling, and Saunders, “Specification based
computing environments,” m Proc. 8th Int. VLDB Conf., 1982, pp.
273:219.-

[3] B. 1. Blum, “A workstation for information systems development,”
in Proc. 7th ZEEE COMPSAC Co&. 1983. on. 116-120.

[4] B. W. Boehm, J. F. Elwell, A. B.“Pryster,‘B.‘D. Stuckle, and R. D.
Williams, “The TRW software productivity system,” in Proc. 6th
Int. Conf. SoJiware Engineering, 1982, pp. 148156.

]5] A. Borgida, S. Greenspan, and J. Mylopolous, “Using knowledge
representation for requirements modeling,” Computer, vol. 18, pp.
82-91, 1985.

[6] A. Borgida, J. Mylopoulas, and H. Wong, “Generalizationlspecial-
ization as a basis for software specification,” in On Conceptual Mod-
elling. New York: Springer-Verlag, 1984.

[7] A. Borgida and K. Williamson, “Accomodating exceptions in data-
bases and refining the schema by learning from them,” in Proc. 11th
VLDB Conf., 1985, pp. 72-81.

[8] R. Davis, “Interactive transfer of expertise,” Artijcial Intell., vol.
12, pp. 121-158, 1979.

VI. CONCLUSIONS

The approach proposed in this paper suggests a novel
way of thinking about systems evolution which empha-
sizes the designer’s assumptions and justifications, rather
than generally valid “meta-theories” of design. This re-

]9] T. deMarco, Structured Analysis and System Specification. New
York: Yourdon, 1978.

[lo] V. Dhar and M. Jarke, “Learning from prototypes,” in Proc. 6th
Int. Conf. Inform. Syst., Dec. 1985, pp. 1’14-133.

[ll] V. Dhar, P. Ranganathan, and M. Jarke, “Taxonomic concept for-
mation and refinement from examples,” Dep. of Inform. Syst., New
York Univ., Working Paper 170, Dec. 1987.

www.manaraa.com

DHAR AND JARKE: DEPENDENCY DIRECTED REASONING AND LEARNING 221

[I21

[I31

1141

[151

[I61

v71

[I81

[I91

WI

t211

WI
W

1241

1251

[261

[271

1281

[291

[301

t311

~321

r331

1341

1. Doyle, “A truth maintenance system,” Massachusetts Inst. Tech-
nol., Cambridge, AI Lab. Memo. 521, 1978.
H. Eckhardt, “Draft report on the database programming language
DBPL,” Univ. Frankfurt, 1985.
C. Gane and T. Sarson, Structured Systems Analysis: Tools and Tech-
niques. Englewood Cliffs, NJ: Prentice-Hall, 1979.
C. Groner, M. D. Hopwood, N. D. Palley, and W. Sibley, “Require-
ments analysis in clinical research information processing-A case
study,” Computer, vol. 12, pp. 100-108, 1979.
C. Hewitt, “Implications of open systems,” in Managers, Micros,
and Mainframes: Integrating Systems for End Users, M. Jarke,
Ed. New York: Wiley, 1986.
M. Jarke, J. Mylopoulos, J. W. Schmidt, and Y. Vassiliou, “KBMS
for software development,” in Proc. Xania Workshop Large-Scale
Knowledge Base Management and Reasoning Systems. New York:
Springer-Verlag, 1987.
M. Jarke and J. Shalev, “A database architecture for supporting busi-
ness transactions,” I. Management Inform., vol. 1, pp.-63-80,.1984.
B. Konsvnski. J. Kotteman. J. Nunamaker, and J. Stott, “PLEXSYS-
84: An *integrated development environment for systems develop-
ment,” I. Management Inform. Syst., vol. 1, 1984.
J. E. Kotteman and B. R. Konsynski, “Dynamic metasystems for
information systems development,” in Proc. 5th Int. Conf. Inform.
Sysr., Tucson, AZ, 1984, pp. 187-204.
D. McAllester, “Reasoning utility package,” Massachusetts Inst.
Technol., Cambridge, AI Lab. Memo 667, 1982.
R. Michalski, Mahine Learning. Palo Alto, CA: Tioga, 1983.
N. Minsky and A. Borgida, “The Darwin software evolution envi-
ronment, ” in Proc. SIGSOFT/SIGPLAN Software Engineering Symp.
Practical Software Development, Pittsburgh, PA, 1984.
T. Mitchell, “Learning and problem solving,” in Proc. Eighth Int.
Joint Conf. Artificial Intelligence, 1983, pp. 1139-1151.
T. Mitchell, S. Mahadevan, and L. Steinberg, “LEAP: A learning
apprentice for VLSI design, ” in Proc. 9th Int. Joint Conf Artificial
Intell., Los. Angeles, CA, 1985, pp. 573-580.
D. Moon and D. Weinreb, Lisp Machine Manual, Massachusetts Inst.
Technol., Cabridge, AL Lab., 1981.
M. Morgenstem, “Active databases as a paradigm for enhancing
computing environments, ” in Proc. 9th VLDB Conj: , Florence, Italy,
1983, pp. 34-42.
J. Mostow, “Towards better models of the design process,” AI Mug.,
vol. 6, pp. 44-66, Spring 1985.
J. MylopouIos, P. A. Bernstein, and H. K. T. Wong, “A language
facility for designing database intensive applications,” ACM Trans.
Database Systems, vol. 5, 1980.
K. Narayanaswamy, W. Scacchi, and D. McLeod, “Management
support for evolving software systems,” Dep. Comput. Sci., Univ.
Southern California, Los Angeles, 1985.
J. D. Naumann, and A. M. Jenkins, “Prototyping: The new paradigm
for systems development,” MIS Quart., vol. 10, pp. 24-40, 1982.
H. Shrobe, “Dependency directed reasoning for complex program
understanding,” Ph.D. dissertation, Massachusetts Inst. Technol.,
Cambridge, 1979.
C. Rich,-” A formal representation for plans in the programmers ap-
nrentice,” in On Conceutual Modeling. M. L. Brodie, J. MV~ODO-
ious, and J. W. Schmidt, Eds. New York: Springer-Verlag, 1984.
E. H. Shortliffe, Computer-Based Medical Consultations: MY-
CIN. New York: American Elsevier, 1976.

[35] H. A. Simon, The Sciences of the Artt$cial. Cambridge, MA:
M.I.T. Press, 1981.

1361 R. Waters, “The programmer’s apprentice: Knowledge based pro-
gram editing,” IEEE Trans. Software Eng., vol. SE-8, pp. l-20,
1982.

[37] P. H. Winston, “Learning and reasoning by analogy,” Commun.
ACM, vol. 23, pp. 689-703, 1979.

mary research interests

Vasant Dhar received the Bachelor of Technol-
ogy (B.Tech.) degree in chemical engineering
from the Indian Institute of Technology, and the
Ph.D. degree in information systems with a major
in artificial intelligence from the University of
Pittsburgh, Pittsburgh, PA.

He is an Assistant Professor of Information
Systems at the Graduate School of Business
Administration, New York University, New York,
NY. He has been a full-time member of the fac-
ulty at New York University since 1983. His pri-

are in the empirical and theoretical aspects of ar-
tificial intelligence. Much of his research involves empirical investigation
of problem-solving processes in domains involving design, planning, and
decision-making, and the design of representational formalisms needed to
build intelligent systems in these domains. He has written a number of
articles on knowledge representation, heuristic search, and methodological
issues in the development of knowledge-based systems.

Matthias Jarke received the Diploma degrees in
business administration and computer science in
1977 and 1979, respectively, and the Ph.D. de-
gree in economical sciences in 1980, all from
Hamburg University, Hamburg, West Germany.

He is now a Professor of Computer Science at
the University of Passau, West Germany. For-
merly, he held faculty positions at New York Uni-
versity and Johann Wolfgang Goethe University,
West Germany. His research interests include the
design, evaluation, and optimization of high-level

database interfaces to end users, decision support systems, and expert sys-
tems, both from a systems programming and from a user perspective. He
is currently leading ESPRIT project DAIDA which investigates knowledge
base management systems for database software development and mainte-
nance. He is the author of a number of articles and book chapters on com-
puter science and business subjects, and of four books in these areas.

Dr. Jarke is a member of the Association for Computing Machinery, the
American Association for Artificial Intelligence, and the IEEE Computer
Society.

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

